Microsemi Corporation Distributor -ICONE Electronic
ICONE uses cookies and similar technologies to collect information about you and your interactions and communications with our website and services (including session replays and chat session recordings), which information may be shared with third-party service providers. Please view our Privacy Statement and Cookie Statement for more information. By continuing to use our site, you agree to the terms of our Privacy Statement, the use of cookies, tags, pixels, beacons and other technologies, and our Site Terms and Conditions.
Trustpilot
FIRST SHOPPING ORDER

FIRST ORDER

FREE 10% DISCOUNT

EXCLUSIVE TO NEW CUSTOMERS
banner_page

Microsemi Corporation

Alarms, Buzzers, and Sirens

Results: 32745
Filters
    Stacked Scrolling
  • 32745 Results
  • Img
    Pdf
    Part Number
    Manufacturers
    Desc
    In Stock
    Packing
    Rfq
    LX8630-33CP
    Linear Voltage Regulator IC Positive Fixed 1 Output 3A TO-220, Power
    3381
    TO-220-3
    SMBJ4733CE3/TR13
    Zener Diode 5.1 V 2 W ±2% Surface Mount SMBJ (DO-214AA)
    8655
    DO-214AA, SMB
    2C5014
    Bipolar (BJT) Transistor
    1825
    -
    SG2844DM
    Converter Offline Topology 100Hz ~ 500kHz 8-SOIC
    9953
    -
    SMBJ4741CE3/TR13
    Zener Diode 11 V 2 W ±2% Surface Mount SMBJ (DO-214AA)
    7436
    DO-214AA, SMB
    STN1116
    Bipolar (BJT) Transistor
    9517
    UC2843AD
    Boost, Buck, Flyback, Forward Regulator Positive, Isolation Capable Output Step-Up, Step-Down DC-DC Controller IC 14-SOIC
    4829
    14-SOIC (0.154", 3.90mm Width)
    SMBJ4749CE3/TR13
    Zener Diode 24 V 2 W ±2% Surface Mount SMBJ (DO-214AA)
    4570
    DO-214AA, SMB
    A Comprehensive Guide To AGL030V2-QNG68I IGLOO Field Programmable Gate Array (FPGA) IC 49 768 68-VFQFN Exposed Pad

    IGLOO Field Programmable Gate Array (FPGA) IC 49 768 68-VFQFN Exposed Pad


    General Description

    The IGLOO family of flash FPGAs, based on a 130-nm flash process, offers the lowest power FPGA, a single-chip solution,

    small footprint packages, reprogrammability, and an abundance of advanced features.

    The Flash*Freeze technology used in IGLOO devices enables entering and exiting an ultra-low power mode that

    consumes as little as 5 μW while retaining SRAM and register data. Flash*Freeze technology simplifies power management

    through I/O and clock management with rapid recovery to operation mode.

    The Low Power Active capability (static idle) allows for ultra-low power consumption (from 12 μW) while the IGLOO device

    is completely functional in the system. This allows the IGLOO device to control system power management based on

    external inputs (e.g., scanning for keyboard stimulus) while consuming minimal power.

    Nonvolatile flash technology gives IGLOO devices the advantage of being a secure, low power, single-chip solution that is

    Instant On. IGLOO is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost.

    These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

    IGLOO devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning

    circuitry based on an integrated phase-locked loop (PLL). The AGL015 and AGL030 devices have no PLL or RAM support.

    IGLOO devices have up to 1 million system gates, supported with up to 144 kbits of true dual-port SRAM and up to 300

    user I/Os.

    M1 IGLOO devices support the high-performance, 32-bit Cortex-M1 processor developed by ARM for implementation in

    FPGAs. Cortex-M1 is a soft processor that is fully implemented in the FPGA fabric. It has a three-stage pipeline that offers

    a good balance between low power consumption and speed when implemented in an M1 IGLOO device. The processor

    runs the ARMv6-M instruction set, has a configurable nested interrupt controller, and can be implemented with or

    without the debug block. Cortex-M1 is available for free from Microsemi for use in M1 IGLOO FPGAs.

    The ARM-enabled devices have ordering numbers that begin with M1AGL and do not support AES decryption.


    Features and Benefits

    • Low Power

          1.2 V to 1.5 V Core Voltage Support for Low Power

          Supports Single-Voltage System Operation

          5 μW Power Consumption in Flash*Freeze Mode

          Low Power Active FPGA Operation

          Flash*Freeze Technology Enables Ultra-Low Power Consumption while MaintainingFPGA Content

          Easy Entry to / Exit from Ultra-Low Power Flash*Freeze Mode

    • High Capacity

          15K to 1 Million System Gates

          Up to 144 Kbits of True Dual-Port SRAM

          Up to 300 User 1/Os

    • Reprogrammable Flash Technology

          130-nm, 7-Layer Metal, Flash-Based CMOS Process

          Instant On Level 0 Support

          Single-Chip Solution

          Retains Programmed Design When Powered Off

          250 MHz (1.5 V systems) and 160 MHz (1.2 V systems) System Performance

    • In-System Programming (ISP) and Security

          ISP Using On-Chip 128-Bit Advanced Encryption Standard (AES) Decryption (except ARM®-enabled IGLOO®devices)

          via JTAG (IEEE 1532-compliant)

          FlashLock®Designed to Secure FPGA Contents

    • High-Performance Routing Hierarchy

          Segmented, Hierarchical Routing and Clock Structure

    • Advanced l/O

          700 Mbps DDR,LVDS-Capable I/Os (AGL250 and above)

          1.2 V, 1.5 V, 1.8 V, 2.5V, and 3.3 V Mixed-Voltage Operation

          Bank-Selectable I/O Voltages--up to 4 Banks per Chip

          Single-Ended I/O Standards:LVTTL,LVCMOS 3.3V/2.5 V/ 1.8 V /1.5 V/ 1.2 .V, 3.3 V PCI/ 3.3 V PCI-X, and LVCMOS

          2.5 V/5.0V Input

          DifferentialI/O Standards:LVPECL,LVDS,B-LVDS,and M-LVDS (AGL250 and above)

          Wide Range Power Supply Voltage Support per JESD8-B, Allowing I/Os to Operate from 2.7 V to 3.6 V

          Wide Range Power Supply Voltage Support per JESD8-12, Allowing I/Os to Operate from 1.14 V to 1.575V

          I/O Registers on Input, Output, and Enable Paths

          Hot-Swappable and Cold-Sparing,I/Os+

          Programmable Output Slew Rateand Drive Strength

          Weak Pull-Up/-Down

          IEEE 1149.1 (JTAG) Boundary Scan Test

          Pin-Compatible Packages across the IGLOO Family

    • Clock Conditioning Circuit(CCC) and PLL

          Six CCC Blocks, One with an Integrated PLL

          Configurable Phase Shift, Multiply/Divide,Delay Capabilities, and External Feedback

          Wide Input Frequency Range (1.5 MHz up to 250 MHz)

    • Embedded Memory

          1 kbit of FlashROM User Nonvolatile Memory

          SRAMs and FIFOs with Variable-Aspect-Ratio4,608-Bit RAM Blocks (x1,x2,x4, x9, and x18 organizations)

          True Dual-Port SRAM (except x18)

    • ARM Processor Support in IGLOO FPGAs

          M1 IGLOO Devices--Cortex®-M1 Soft Processor Available with or without Debug


    How to choose FPGA for your project?



                                                                     



    PDF

    4897
    68-VFQFN Exposed Pad
    LX1570MY
    Power Supply Controller Secondary-Side Controller 8-CDIP
    4692
    8-CDIP (0.300", 7.62mm)
    SMBJ4757CE3/TR13
    Zener Diode 51 V 2 W ±2% Surface Mount SMBJ (DO-214AA)
    7763
    DO-214AA, SMB
    A Comprehensive Guide To AGL125V2-VQ100T IGLOO Field Programmable Gate Array (FPGA) IC 71 36864 3072 100-TQFP

    IGLOO Field Programmable Gate Array (FPGA) IC 71 36864 3072 100-TQFP


    General Description

    The IGLOO family of flash FPGAs, based on a 130-nm flash process, offers the lowest power FPGA, a single-chip solution,

    small footprint packages, reprogrammability, and an abundance of advanced features.

    The Flash*Freeze technology used in IGLOO devices enables entering and exiting an ultra-low power mode that

    consumes as little as 5 μW while retaining SRAM and register data. Flash*Freeze technology simplifies power management

    through I/O and clock management with rapid recovery to operation mode.

    The Low Power Active capability (static idle) allows for ultra-low power consumption (from 12 μW) while the IGLOO device

    is completely functional in the system. This allows the IGLOO device to control system power management based on

    external inputs (e.g., scanning for keyboard stimulus) while consuming minimal power.

    Nonvolatile flash technology gives IGLOO devices the advantage of being a secure, low power, single-chip solution that is

    Instant On. IGLOO is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost.

    These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

    IGLOO devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning

    circuitry based on an integrated phase-locked loop (PLL). The AGL015 and AGL030 devices have no PLL or RAM support.

    IGLOO devices have up to 1 million system gates, supported with up to 144 kbits of true dual-port SRAM and up to 300

    user I/Os.

    M1 IGLOO devices support the high-performance, 32-bit Cortex-M1 processor developed by ARM for implementation in

    FPGAs. Cortex-M1 is a soft processor that is fully implemented in the FPGA fabric. It has a three-stage pipeline that offers

    a good balance between low power consumption and speed when implemented in an M1 IGLOO device. The processor

    runs the ARMv6-M instruction set, has a configurable nested interrupt controller, and can be implemented with or

    without the debug block. Cortex-M1 is available for free from Microsemi for use in M1 IGLOO FPGAs.

    The ARM-enabled devices have ordering numbers that begin with M1AGL and do not support AES decryption.


    Features and Benefits

    • Low Power

          1.2 V to 1.5 V Core Voltage Support for Low Power

          Supports Single-Voltage System Operation

          5 μW Power Consumption in Flash*Freeze Mode

          Low Power Active FPGA Operation

          Flash*Freeze Technology Enables Ultra-Low Power Consumption while MaintainingFPGA Content

          Easy Entry to / Exit from Ultra-Low Power Flash*Freeze Mode

    • High Capacity

          15K to 1 Million System Gates

          Up to 144 Kbits of True Dual-Port SRAM

          Up to 300 User 1/Os

    • Reprogrammable Flash Technology

          130-nm, 7-Layer Metal, Flash-Based CMOS Process

          Instant On Level 0 Support

          Single-Chip Solution

          Retains Programmed Design When Powered Off

          250 MHz (1.5 V systems) and 160 MHz (1.2 V systems) System Performance

    • In-System Programming (ISP) and Security

          ISP Using On-Chip 128-Bit Advanced Encryption Standard (AES) Decryption (except ARM®-enabled IGLOO®devices)

          via JTAG (IEEE 1532-compliant)

          FlashLock®Designed to Secure FPGA Contents

    • High-Performance Routing Hierarchy

          Segmented, Hierarchical Routing and Clock Structure

    • Advanced l/O

          700 Mbps DDR,LVDS-Capable I/Os (AGL250 and above)

          1.2 V, 1.5 V, 1.8 V, 2.5V, and 3.3 V Mixed-Voltage Operation

          Bank-Selectable I/O Voltages--up to 4 Banks per Chip

          Single-Ended I/O Standards:LVTTL,LVCMOS 3.3V/2.5 V/ 1.8 V /1.5 V/ 1.2 .V, 3.3 V PCI/ 3.3 V PCI-X, and LVCMOS

          2.5 V/5.0V Input

          DifferentialI/O Standards:LVPECL,LVDS,B-LVDS,and M-LVDS (AGL250 and above)

          Wide Range Power Supply Voltage Support per JESD8-B, Allowing I/Os to Operate from 2.7 V to 3.6 V

          Wide Range Power Supply Voltage Support per JESD8-12, Allowing I/Os to Operate from 1.14 V to 1.575V

          I/O Registers on Input, Output, and Enable Paths

          Hot-Swappable and Cold-Sparing,I/Os+

          Programmable Output Slew Rateand Drive Strength

          Weak Pull-Up/-Down

          IEEE 1149.1 (JTAG) Boundary Scan Test

          Pin-Compatible Packages across the IGLOO Family

    • Clock Conditioning Circuit(CCC) and PLL

          Six CCC Blocks, One with an Integrated PLL

          Configurable Phase Shift, Multiply/Divide,Delay Capabilities, and External Feedback

          Wide Input Frequency Range (1.5 MHz up to 250 MHz)

    • Embedded Memory

          1 kbit of FlashROM User Nonvolatile Memory

          SRAMs and FIFOs with Variable-Aspect-Ratio4,608-Bit RAM Blocks (x1,x2,x4, x9, and x18 organizations)

          True Dual-Port SRAM (except x18)

    • ARM Processor Support in IGLOO FPGAs

          M1 IGLOO Devices--Cortex®-M1 Soft Processor Available with or without Debug


    How to choose FPGA for your project?



                                                                   



    PDF

    7199
    100-TQFP
    1PMT4614E3/TR7
    Zener Diode 1.8 V 1 W ±5% Surface Mount DO-216AA
    4014
    DO-216AA
    SMBJ5333B/TR13
    Zener Diode 3.3 V 5 W ±5% Surface Mount SMBJ (DO-214AA)
    1945
    DO-214AA, SMB
    A Comprehensive Guide To A3P250L-VQ100 ProASIC3L Field Programmable Gate Array (FPGA) IC 68 36864 100-TQFP

    ProASIC3L Field Programmable Gate Array (FPGA) IC 68 36864 100-TQFP


    Clock Frequency Synthesis

    Deriving clocks of various frequencies from a single reference clock is known as frequency synthesis.The PLL has an input

    frequency range from 1.5 to 350 MHz. This frequency is automatically divideddown to a range between 1.5 MHz and

    5.5 MHz by input dividers (not shown in Figure 4-19 on page 100)between PLL macro inputs and PLL phase detector

    inputs. The VCO output is capable of an outputrange from 24 to 350 MHz. With dividers before the input to the PLL core

    and following the VCO outputs,the VCO output frequency can be divided to provide the final frequency range from 0.75

    to 350 MHz.Using SmartGen, the dividers are automatically set to achieve the closest possible matches to thespecified

    output frequencies.

    Users should be cautious when selecting the desired PLL input and output frequencies and the I/O bufferstandard used

    to connect to the PLL input and output clocks. Depending on the I/O standards used forthe PLL input and output clocks,

    the I/O frequencies have different maximum limits. Refer to the familydatasheets for specifications of maximum I/O

    frequencies for supported I/O standards. Desired PLL inputor output frequencies will not be achieved if the selected

    frequencies are higher than the maximum I/Ofrequencies allowed by the selected I/O standards. Users should be careful

    when selecting the I/Ostandards used for PLL input and output clocks. Performing post-layout simulation can help detect

    thistype of error, which will be identified with pulse width violation errors. Users are strongly encouraged toperform

    post-layout simulation to ensure the I/O standard used can provide the desired PLL input oroutput frequencies. Users can

    also choose to cascade PLLs together to achieve the high frequenciesneeded for their applications. Details of cascading

    PLLs are discussed in the "Cascading CCCs" sectionon page 125.

    In SmartGen, the actual generated frequency (under typical operating conditions) will be displayedbeside the requested

    output frequency value. This provides the ability to determine the exact frequencythat can be generated by SmartGen, in

    real time. The log file generated by SmartGen is a useful tool indetermining how closely the requested clock frequencies

    match the user specifications. For example,assume a user specifies 101 MHz as one of the secondary output frequencies.

    If the best outputfrequency that could be achieved were 100 MHz, the log file generated by SmartGen would indicate

    theactual generated frequency


    How to choose FPGA for your project?



                                                                   



    PDF

    6617
    100-TQFP
    APT13GP120KG
    IGBT PT 1200 V 41 A 250 W Through Hole TO-220 [K]
    7970
    TO-220-3
    SMBJ5336B/TR13
    Zener Diode 4.3 V 5 W ±5% Surface Mount SMBJ (DO-214AA)
    7418
    DO-214AA, SMB
    A Comprehensive Guide To A3P400-FG484I ProASIC3 Field Programmable Gate Array (FPGA) IC 194 55296 484-BGA

    ProASIC3 Field Programmable Gate Array (FPGA) IC 194 55296 484-BGA


    General Description

    ProASIC3,the third-generation family of Microsemi flash FPGAs, offers performance, density, and features beyond those

    of the ProASICPLUS® family. Nonvolatile flash technology gives ProASIC3 devices the advantage of being a secure, low

    power, single-chip solution that is Instant On. ProASIC3 is reprogrammable and offers time-to-market benefits at an

    ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design

    flows and tools.

    ProASIC3 devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning

    circuitry based on an integrated phase-locked loop (PLL). The A3P015 and A3P030 devices have no PLL or RAM support.

    ProASIC3 devices have up to 1 million system gates, supported with up to 144 kbits of true dual-port SRAM and up to

    300 user I/Os.

    ProASIC3 devices support the ARM Cortex-M1 processor. The ARM-enabled devices have Microsemi ordering numbers

    that begin with M1A3P (Cortex-M1) and do not support AES decryption.


    Features and Benefits

    • High Capacity

          15 K to 1 M System Gates

          Up to 144 Kbits of True Dual-Port SRAM

          Up to 300 User I/Os

    • Reprogrammable Flash Technology

          130-nm, 7-Layer Metal (6 Copper), Flash-Based CMOS Process

          Instant On Level 0 Support

          Single-Chip Solution

          Retains Programmed Design when Powered Off

    • High Performance

          350 MHz System Performance

          3.3 V, 66 MHz 64-Bit PCI

    • In-System Programming (ISP) and Security

          ISP Using On-Chip 128-Bit Advanced Encryption Standard (AES) Decryption (except ARM®-enabled ProASIC®3

          devices) via JTAG (IEEE 1532-compliant)

          FlashLock® to Secure FPGA Contents

    • Low Power

          Core Voltage for Low Power

          Support for 1.5V-Only Systems

          Low-Impedance Flash Switches

    • High-Performance Routing Hierarchy

          Segmented, Hierarchical Routing and Clock Structure

    • Advanced I/O

          700 Mbps DDR,LVDS-Capable I/Os (A3P250 and above)

          1.5V, 1.8 V, 2.5 V,and 3.3V Mixed-Voltage Operation

          Wide Range Power Supply Voltage Support per JESD8-B, Allowing I/Os to Operate from 2.7 V to 3.6 V

          Bank-Selectable I/O Voltages—up to 4 Banks per Chip

          Single-Ended I/O Standards: LVTTL, LVCMOS 3.3V / 2.5V / 1.8V / 1.5V, 3.3V PCI / 3.3V PCI-X and LVCMOS 2.5V / 5.0V

          Input

          Differential I/O Standards: LVPECL,LVDS,B-LVDS, and M-LVDS (A3P250 and above)

          I/O Registers on Input, Output, and Enable Paths

          Hot-Swappable and Cold Sparing I/Os

          Programmable Output Slew Rate and Drive Strength

          Weak Pull-Up/-Down

          IEEE 1149.1 (JTAG) Boundary Scan Test

          Pin-Compatible Packages across the ProASIC3 Family

    • Clock Conditioning Circuit (CCC) and PLL

          Six CCC Blocks, One with an Integrated PLL

          Configurable Phase-Shift, Multiply/Divide, Delay Capabilities and External Feedback

          Wide Input Frequency Range (1.5 MHz to 350 MHz)

    • Embedded Memory

          1 Kbit of FlashROM User Nonvolatile Memory

          SRAMs and FIFOs with Variable-Aspect-Ratio 4,608-Bit RAM Blocks (x1, x2, x4, x9, and x18 organizations)

          True Dual-Port SRAM (except x18)

    • ARM Processor Support in ProASIC3 FPGAs

          M1 ProASIC3 Devices-ARM®Cortex®-M1 Soft Processor Available with or without Debug


    How to choose FPGA for your project?



                                                                   



    PDF

    7231
    484-BGA
    APT17N80SC3G
    N-Channel 800 V 17A (Tc) 208W (Tc) Surface Mount D3Pak
    8258
    TO-268-3, D³Pak (2 Leads + Tab), TO-268AA
    SMBJ5339CE3/TR13
    Zener Diode 5.6 V 5 W ±2% Surface Mount SMBJ (DO-214AA)
    7258
    DO-214AA, SMB
    APT2X60D30J
    Diode Array 2 Independent 300 V 60A Chassis Mount SOT-227-4, miniBLOC
    5351
    SOT-227-4, miniBLOC
    SMBJ5382BE3/TR13
    Zener Diode 140 V 5 W ±5% Surface Mount SMBJ (DO-214AA)
    9337
    DO-214AA, SMB
    APT40M70LVFRG
    N-Channel 400 V 57A (Tc) 520W (Tc) Through Hole TO-264 [L]
    8398
    TO-264-3, TO-264AA
    SMBJ5916AE3/TR13
    Zener Diode 4.3 V 2 W ±10% Surface Mount SMBJ (DO-214AA)
    2302
    DO-214AA, SMB
    APT60M80JVR
    N-Channel 600 V 55A (Tc) 568W (Tc) Chassis Mount ISOTOP®
    4676
    SOT-227-4, miniBLOC
    SMBJ5950CE3/TR13
    Zener Diode 110 V 2 W ±2% Surface Mount SMBJ (DO-214AA)
    4436
    DO-214AA, SMB
    1N4762ADO41E3
    Zener Diode 82 V 1 W ±5% Through Hole DO-204AL (DO-41)
    1857
    DO-204AL, DO-41, Axial
    UPP9401/TR13
    RF Diode PIN - Single 50V 2.5 W DO-216
    6189
    DO-216AA
    1N5341BE3
    Zener Diode 6.2 V 5 W ±5% Through Hole T-18
    5307
    T-18, Axial
    1EZ110D2E3/TR8
    Zener Diode 110 V 1 W ±2% Through Hole DO-204AL (DO-41)
    2331
    DO-204AL, DO-41, Axial

    Please send RFQ , we will respond immediately.

    Product:

    *Contact Name

    * Telephone

    Business Email

    * Company Name

    * Country

    * Quantity