FIRST ORDER
FREE 10% DISCOUNT
Img
|
Pdf
|
Part Number
|
Manufacturers
|
Desc
|
In Stock
|
Packing
|
Rfq
|
||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ECP2 Field Programmable Gate Array (FPGA) IC 402 282624 21000 672-BBGA
|
1759
|
672-BBGA
|
|
||||||||||||||||||||||||||
LA-MachXO Field Programmable Gate Array (FPGA) IC 206 442368 9400 256-LFBGA
|
4203
|
256-LFBGA
|
|
||||||||||||||||||||||||||
ECP2 Field Programmable Gate Array (FPGA) IC 331 282624 21000 484-BBGA
|
9211
|
484-BBGA
|
|
||||||||||||||||||||||||||
MachXO3D Field Programmable Gate Array (FPGA) IC 58 442368 9400 69-WFBGA, WLCSP
|
8526
|
69-WFBGA, WLCSP
|
|
||||||||||||||||||||||||||
ECP2 Field Programmable Gate Array (FPGA) IC 450 339968 32000 672-BBGA
|
3092
|
672-BBGA
|
|
||||||||||||||||||||||||||
ECP5 Field Programmable Gate Array (FPGA) IC 98 1032192 24000 144-LQFP
|
2205
|
144-LQFP
|
|
||||||||||||||||||||||||||
ECP2 Field Programmable Gate Array (FPGA) IC 500 396288 48000 672-BBGA
|
1193
|
672-BBGA
|
|
||||||||||||||||||||||||||
CetrusPro™-NX Field Programmable Gate Array (FPGA) IC 309 3833856 96000 484-BBGA
|
9331
|
484-BBGA
|
|
||||||||||||||||||||||||||
ECP2 Field Programmable Gate Array (FPGA) IC 90 56320 6000 144-LQFP
|
1333
|
144-LQFP
|
|
||||||||||||||||||||||||||
Cetrus™-NX Field Programmable Gate Array (FPGA) IC 71 1548288 39000 121-VFBGA, CSPBGA
|
8946
|
121-VFBGA, CSPBGA
|
|
||||||||||||||||||||||||||
ECP2 Field Programmable Gate Array (FPGA) IC 500 1056768 68000 672-BBGA
|
6006
|
672-BBGA
|
|
||||||||||||||||||||||||||
iCE40 UltraLite™ Field Programmable Gate Array (FPGA) IC 26 57344 1248 36-VFBGA General Description iCE40 UltraLite family is an optimum logic, smallest footprint, low I/O count ultra-low power FPGA and sensor manager with instant on capability. It is designed for ultra-low power mobile applications, such as smartphones, tabletsand hand-held devices. The iCE40 UltraLite family includes integrated blocks to interface with virtually all mobile sensors and application processors. The iCE40 UltraLite family also features two on-chip oscillators, 10 kHz and 48 MHz. The LFOSC (10 kHz) is ideal for low power function in always-on applications, while HFOSC (48 MHz) can beused for awaken activities. The hardened RGB PWM IP, with the three 24 mA constant current RGB LED outputs on the iCE40 UltraLite provides all the necessary logic to directly drive the service LED, without the need of external MOSFET or buffer. The 400 mA constant current IR driver output provides a direct interface to external LED for application such as IrDA functions. Users simply implement the hardened TX/RX pulse logic that meets their needs, and connect the IRdriver directly to the LED, without the need of external MOSFET or buffer. The 100 mA Barcode Emulation driveroutput provides a direct interface for applications such as barcode scanning. The 100 mA and 400 mA drivers canalso be combined to be used as a 500 mA IR driver if higher than 400 mA current drive is required. The iCE40 UltraLite family of devices are targeting for mobile applications to perform functions such as IrDA, Service LED, Barcode Emulation, GPIO Expander, SDIO Level Shift, and other custom functions. The iCE40 UltraLite family features two device densities of 640 or 1K Look Up Tables (LUTs) of logic with programmable I/Os that can be used as an interface port or general purpose I/O. It also has up to 56 kbits of Block RAMs towork with user logic. Features
Two devices with 640 or 1K LUTs Offered in 16-ball WLCSP package Offered in 36-ball ucBGA package
Advanced 40 nm ultra-low power process Typical 35 µA standby current which equals42 uW standby power consumption
Up to 56 kbits sysMEM™ Embedded Block RAM
Two optional FIFO mode I2C interface up to1 MHz Either master or slave
Low Frequency Oscillator - 10 kHz High Frequency Oscillator - 48 MHz
Three drive outputs in each device User selectable sink current up to 24 mA
One IR drive output in each device User selectable sink current up to 400 mA Can be combined with 100 mA Barcode driver toform 500 mA IR driver
One barcode driver output in each device User selectable sink current up to 100 mA Can be combined with 400 mA IR driver to useas 500 mA IR driver
Eight low skew global signal resource, six canbe directly driven from external pins One PLL with dynamic interface per device
SRAM is configured through: — Standard SPI Interface — Internal Nonvolatile Configuration Memory(NVCM)
As small as 1.409 mm x 1.409 mm
Smartphones Tablets and Consumer Handheld Devices Handheld Industrial Devices Multi Sensor Management Applications IR remote, Barcode emulator RGB light control How to choose FPGA for your project?
|
946
|
36-VFBGA
|
|
||||||||||||||||||||||||||
ECP2 Field Programmable Gate Array (FPGA) IC 583 1056768 68000 900-BBGA
|
4485
|
900-BBGA
|
|
||||||||||||||||||||||||||
MachXO3 Field Programmable Gate Array (FPGA) IC 28 65536 1280 36-UFBGA, WLCSP General Description MachXO3™ device family is an Ultra-Low Density family that supports the most advanced programmable bridging and I/O expansion. It has the breakthrough I/O density and the lowest cost per I/O. The device I/O features have the integrated support for latest industry standard I/O. The MachXO3L/LF family of low power, instant-on, non-volatile PLDs has five devices with densities ranging from 640 to 9400 Look-Up Tables (LUTs). In addition to LUT-based, low-cost programmable logic these devices feature Embedded Block RAM (EBR), Distributed RAM, Phase Locked Loops (PLLs), pre-engineered source synchronous I/O support, advanced configuration support including dual-boot capability and hardened versions of commonly used functions such as SPI controller, I2C controller and timer/counter. MachXO3LF devices also support User Flash Memory (UFM). These features allow these devices to be used in low cost, high volume applications such as consumer electronics, compute and storage, wireless communications, industrial control, and automotive systems. The MachXO3L/LF devices are designed on a 65 nm non-volatile low power process. The device architecture has several features such as programmable low swing differential I/O and the ability to turn off I/O banks, on-chip PLLs and oscillators dynamically. These features help manage static and dynamic power consumption resulting in low static power for all members of the family. The MachXO3L/LF devices are available in two versions C and E with two speed grades: -5 and -6, with -6 being the fastest. C devices have an internal linear voltage regulator which supports external VCC supply voltages of 3.3 V or 2.5 V. E devices only accept 1.2 V as the external VCC supply voltage. With the exception of power supply voltage both C and E are functionally compatible with each other. The MachXO3L/LF PLDs are available in a broad range of advanced halogen-free packages ranging from the space saving 2.5 x 2.5 mm WLCSP to the 19 x 19 mm caBGA. MachXO3L/LF devices support density migration within the same package. Table 1.1 shows the LUT densities, package and I/O options, along with other key parameters. The MachXO3L/LF devices offer enhanced I/O features such as drive strength control, slew rate control, PCI compatibility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. Pull-up, pull-down and bus-keeper features are controllable on a “per-pin” basis. A user-programmable internal oscillator is included in MachXO3L/LF devices. The clock output from this oscillator may be divided by the timer/counter for use as clock input in functions such as LED control, keyboard scanner and similar state machines. The MachXO3L/LF devices also provide flexible, reliable and secure configuration from on-chip NVCM/Flash. These devices can also configure themselves from external SPI Flash or be configured by an external master through the JTAG test access port or through the I²C port. Additionally, MachXO3L/LF devices support dual-boot capability (using external Flash memory) and remote field upgrade (TransFR) capability. Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the MachXO3L/LF family of devices. Popular logic synthesis tools provide synthesis library support for MachXO3L/LF. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the MachXO3L/LF device. These tools extract the timing from the routing and back-annotate it into the design for timing verification. Lattice provides many pre-engineered IP (Intellectual Property) LatticeCORE™ modules, including a number of reference designs licensed free of charge, optimized for the MachXO3L/LF PLD family. By using these configurable soft core IP cores as standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their productivity. Features
Smallest footprint, lowest power, high data throughput bridging solutions for mobile applications Optimized footprint, logic density, I/O count, I/O performance devices for I/O management and logic applications High I/O logic, lowest cost I/O, high I/O devices for I/O expansion applications
Logic Density ranging from 64 to 9.4 k LUT4 High I/O to LUT ratio with up to 384 I/O pins
0.4 mm pitch: 1 k to 4 k densities in very small footprint WLCSP (2.5 mm × 2.5 mm to 3.8 mm × 3.8 mm) with 28 to 63 I/O 0.5 mm pitch: 640 to 9.4 k LUT densities in 6 mm x 6 mm to 10 mm x 10 mm BGA packages with up to281 I/O 0.8 mm pitch: 1 k to 9.4 k densities with up to 384 I/O in BGA packages
DDR registers in I/O cells Dedicated gearing logic 7:1 Gearing for Display I/O Generic DDR, DDRx2, DDRx4
Programmable sysI/O™ buffer supports wide range of interfaces: LVCMOS 3.3/2.5/1.8/1.5/1.2 LVTTL LVDS, Bus-LVDS, MLVDS, LVPECL MIPI D-PHY Emulated Schmitt trigger inputs, up to 0.5 V hysteresis Ideal for I/O bridging applications I/O support hot socketing On-chip differential termination Programmable pull-up or pull-down mode
Eight primary clocks Up to two edge clocks for high-speed I/O interfaces (top and bottom sides only) Up to two analog PLLs per device with fractional-n frequency synthesis Wide input frequency range (7 MHz to 400 MHz).
Instant-on Powers up in microseconds Optional dual boot with external SPI memory Single-chip, secure solution Programmable through JTAG, SPI or I2C MachXO3L includes multi-time programmable NVCM MachXO3LF reconfigurable Flash includes 100,000 write/erase cycle for commercial/industrial devices and 10,000 for automotive devices Supports background programming of non volatile memory
In-field logic update while I/O holds the system state
On-chip hardened functions: SPI, I2C, timer/counter On-chip oscillator with 5.5% accuracy for commercial/industrial devices Unique TraceID for system tracking Single power supply with extended operatingrange IEEE Standard 1149.1 boundary scan IEEE 1532 compliant in-system programming
Consumer Electronics Compute and Storage Wireless Communications Industrial Control Systems Automotive System
Migration from the Flash based MachXO3LF to the NVCM based MachXO3L Pin compatible and equivalent timing How to choose FPGA for your project?
|
9235
|
36-UFBGA, WLCSP
|
|
||||||||||||||||||||||||||
ECP2M Field Programmable Gate Array (FPGA) IC 520 5435392 95000 1152-BBGA
|
3038
|
1152-BBGA
|
|
||||||||||||||||||||||||||
MachXO3 Field Programmable Gate Array (FPGA) IC 100 94208 4320 121-VFBGA, CSPBGA General Description MachXO3™ device family is an Ultra-Low Density family that supports the most advanced programmable bridging and I/O expansion. It has the breakthrough I/O density and the lowest cost per I/O. The device I/O features have the integrated support for latest industry standard I/O. The MachXO3L/LF family of low power, instant-on, non-volatile PLDs has five devices with densities ranging from 640 to 9400 Look-Up Tables (LUTs). In addition to LUT-based, low-cost programmable logic these devices feature Embedded Block RAM (EBR), Distributed RAM, Phase Locked Loops (PLLs), pre-engineered source synchronous I/O support, advanced configuration support including dual-boot capability and hardened versions of commonly used functions such as SPI controller, I2C controller and timer/counter. MachXO3LF devices also support User Flash Memory (UFM). These features allow these devices to be used in low cost, high volume applications such as consumer electronics, compute and storage, wireless communications, industrial control, and automotive systems. The MachXO3L/LF devices are designed on a 65 nm non-volatile low power process. The device architecture has several features such as programmable low swing differential I/O and the ability to turn off I/O banks, on-chip PLLs and oscillators dynamically. These features help manage static and dynamic power consumption resulting in low static power for all members of the family. The MachXO3L/LF devices are available in two versions C and E with two speed grades: -5 and -6, with -6 being the fastest. C devices have an internal linear voltage regulator which supports external VCC supply voltages of 3.3 V or 2.5 V. E devices only accept 1.2 V as the external VCC supply voltage. With the exception of power supply voltage both C and E are functionally compatible with each other. The MachXO3L/LF PLDs are available in a broad range of advanced halogen-free packages ranging from the space saving 2.5 x 2.5 mm WLCSP to the 19 x 19 mm caBGA. MachXO3L/LF devices support density migration within the same package. Table 1.1 shows the LUT densities, package and I/O options, along with other key parameters. The MachXO3L/LF devices offer enhanced I/O features such as drive strength control, slew rate control, PCI compatibility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. Pull-up, pull-down and bus-keeper features are controllable on a “per-pin” basis. A user-programmable internal oscillator is included in MachXO3L/LF devices. The clock output from this oscillator may be divided by the timer/counter for use as clock input in functions such as LED control, keyboard scanner and similar state machines. The MachXO3L/LF devices also provide flexible, reliable and secure configuration from on-chip NVCM/Flash. These devices can also configure themselves from external SPI Flash or be configured by an external master through the JTAG test access port or through the I²C port. Additionally, MachXO3L/LF devices support dual-boot capability (using external Flash memory) and remote field upgrade (TransFR) capability. Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the MachXO3L/LF family of devices. Popular logic synthesis tools provide synthesis library support for MachXO3L/LF. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the MachXO3L/LF device. These tools extract the timing from the routing and back-annotate it into the design for timing verification. Lattice provides many pre-engineered IP (Intellectual Property) LatticeCORE™ modules, including a number of reference designs licensed free of charge, optimized for the MachXO3L/LF PLD family. By using these configurable soft core IP cores as standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their productivity. Features
Smallest footprint, lowest power, high data throughput bridging solutions for mobile applications Optimized footprint, logic density, I/O count, I/O performance devices for I/O management and logic applications High I/O logic, lowest cost I/O, high I/O devices for I/O expansion applications
Logic Density ranging from 64 to 9.4 k LUT4 High I/O to LUT ratio with up to 384 I/O pins
0.4 mm pitch: 1 k to 4 k densities in very small footprint WLCSP (2.5 mm × 2.5 mm to 3.8 mm × 3.8 mm) with 28 to 63 I/O 0.5 mm pitch: 640 to 9.4 k LUT densities in 6 mm x 6 mm to 10 mm x 10 mm BGA packages with up to281 I/O 0.8 mm pitch: 1 k to 9.4 k densities with up to 384 I/O in BGA packages
DDR registers in I/O cells Dedicated gearing logic 7:1 Gearing for Display I/O Generic DDR, DDRx2, DDRx4
Programmable sysI/O™ buffer supports wide range of interfaces: LVCMOS 3.3/2.5/1.8/1.5/1.2 LVTTL LVDS, Bus-LVDS, MLVDS, LVPECL MIPI D-PHY Emulated Schmitt trigger inputs, up to 0.5 V hysteresis Ideal for I/O bridging applications I/O support hot socketing On-chip differential termination Programmable pull-up or pull-down mode
Eight primary clocks Up to two edge clocks for high-speed I/O interfaces (top and bottom sides only) Up to two analog PLLs per device with fractional-n frequency synthesis Wide input frequency range (7 MHz to 400 MHz).
Instant-on Powers up in microseconds Optional dual boot with external SPI memory Single-chip, secure solution Programmable through JTAG, SPI or I2C MachXO3L includes multi-time programmable NVCM MachXO3LF reconfigurable Flash includes 100,000 write/erase cycle for commercial/industrial devices and 10,000 for automotive devices Supports background programming of non volatile memory
In-field logic update while I/O holds the system state
On-chip hardened functions: SPI, I2C, timer/counter On-chip oscillator with 5.5% accuracy for commercial/industrial devices Unique TraceID for system tracking Single power supply with extended operatingrange IEEE Standard 1149.1 boundary scan IEEE 1532 compliant in-system programming
Consumer Electronics Compute and Storage Wireless Communications Industrial Control Systems Automotive System
Migration from the Flash based MachXO3LF to the NVCM based MachXO3L Pin compatible and equivalent timing How to choose FPGA for your project?
|
7474
|
121-VFBGA, CSPBGA
|
|
||||||||||||||||||||||||||
ECP2M Field Programmable Gate Array (FPGA) IC 304 1246208 19000 484-BBGA
|
5325
|
484-BBGA
|
|
||||||||||||||||||||||||||
MachXO2 Field Programmable Gate Array (FPGA) IC 79 75776 2112 100-LQFP General Description The MachXO2 family of ultra low power, instant-on, non-volatile PLDs has six devices with densities ranging from 256 to 6864 Look-Up Tables (LUTs). In addition to LUT-based, low-cost programmable logic these devices feature Embedded Block RAM (EBR), Distributed RAM, User Flash Memory (UFM), Phase Locked Loops (PLLs), preengineered source synchronous I/O support, advanced configuration support including dual-boot capability and hardened versions of commonly used functions such as SPI controller, I²C controller and timer/counter. These features allow these devices to be used in low cost, high volume consumer and system applications. The MachXO2 devices are designed on a 65 nm non-volatile low power process. The device architecture has several features such as programmable low swing differential I/Os and the ability to turn off I/O banks, on-chip PLLs and oscillators dynamically. These features help manage static and dynamic power consumption resulting in low static power for all members of the family. The MachXO2 devices are available in two versions – ultra low power (ZE) and high performance (HC and HE) devices. The ultra low power devices are offered in three speed grades –1, –2 and –3, with –3 being the fastest. Similarly, the high-performance devices are offered in three speed grades: –4, –5 and –6, with –6 being the fastest. HC devices have an internal linear voltage regulator which supports external VCC supply voltages of 3.3 V or 2.5 V. ZE and HE devices only accept 1.2 V as the external VCC supply voltage. With the exception of power supply voltage all three types of devices (ZE, HC and HE) are functionally compatible and pin compatible with each other. The MachXO2 PLDs are available in a broad range of advanced halogen-free packages ranging from the space saving 2.5 mm x 2.5 mm WLCSP to the 23 mm x 23 mm fpBGA. MachXO2 devices support density migration within the same package. Table 1-1 shows the LUT densities, package and I/O options, along with other key parameters. The pre-engineered source synchronous logic implemented in the MachXO2 device family supports a broad range of interface standards, including LPDDR, DDR, DDR2 and 7:1 gearing for display I/Os. The MachXO2 devices offer enhanced I/O features such as drive strength control, slew rate control, PCI compati bility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. Pull-up, pull-down and bus-keeper features are controllable on a“per-pin”basis. A user-programmable internal oscillator is included in MachXO2 devices. The clock output from this oscillator may be divided by the timer/counter for use as clock input in functions such as LED control, key-board scanner and sim-ilar state machines. The MachXO2 devices also provide flexible, reliable and secure configuration from on-chip Flash memory. These devices can also configure themselves from external SPI Flash or be configured by an external master through the JTAG test access port or through the I2C port. Additionally, MachXO2 devices support dual-boot capability (using external Flash memory) and remote field upgrade (TransFR) capability. Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the MachXO2 family of devices. Popular logic synthesis tools provide synthesis library support for MachXO2. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the MachXO2 device. These tools extract the timing from the routing and back-annotate it intothe design for timing verification. Lattice provides many pre-engineered IP (Intellectual Property) LatticeCORE™ modules, including a number of reference designs licensed free of charge, optimized for the MachXO2 PLD family. By using these configurable soft core IP cores as standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their productivity. Features
Six devices with 256 to 6864 LUT4s and 18 to 334 I/Os
Advanced 65 nm low power process As low as 22 µW standby power Programmable low swing differential I/Os Stand-by mode and other power saving options
Up to 240 kbits sysMEM™ Embedded BlockRAM Up to 54 kbits Distributed RAM Dedicated FIFO control logic
Up to 256 kbits of User Flash Memory 100,000 write cycles Accessible through WISHBONE, SPI, I2C and JTAG interfaces Can be used as soft processor PROM or as Flash memory
DDR registers in I/O cells Dedicated gearing logic 7:1 Gearing for Display I/Os Generic DDR, DDRX2, DDRX4 Dedicated DDR/DDR2/LPDDR memory with DQS support
Programmable sysIO™ buffer supports wide range of interfaces: – LVCMOS 3.3/2.5/1.8/1.5/1.2 – LVTTL – PCI – LVDS, Bus-LVDS, MLVDS, RSDS, LVPECL – SSTL 25/18 – HSTL 18 – Schmitt trigger inputs, up to 0.5 V hysteresis I/Os support hot socketing On-chip differential termination Programmable pull-up or pull-down mode
Eight primary clocks Up to two edge clocks for high-speed I/O interfaces (top and bottom sides only) Up to two analog PLLs per device with fractional-n frequency synthesis – Wide input frequency range (7 MHz to 400 MHz)
Instant-on – powers up in microseconds Single-chip, secure solution Programmable through JTAG, SPI or I²C Supports background programming of non-vola-tile memory Optional dual boot with external SPI memory
In-field logic update while system operates
On-chip hardened functions: SPI, I²C, timer/counter On-chip oscillator with 5.5% accuracy Unique TraceID for system tracking One Time Programmable (OTP) mode Single power supply with extended operating range IEEE Standard 1149.1 boundary scan IEEE 1532 compliant in-system programming
TQFP, WLCSP, ucBGA, csBGA, caBGA, ftBGA, fpBGA, QFN package options Small footprint package options – As small as 2.5 mm x 2.5 mm Density migration supported Advanced halogen-free packaging How to choose FPGA for your project?
|
3929
|
100-LQFP
|
|
||||||||||||||||||||||||||
ECP2M Field Programmable Gate Array (FPGA) IC 303 2151424 34000 484-BBGA
|
2456
|
484-BBGA
|
|
||||||||||||||||||||||||||
MachXO3 Field Programmable Gate Array (FPGA) IC 206 442368 9400 256-LFBGA General Description MachXO3™ device family is an Ultra-Low Density family that supports the most advanced programmable bridging and I/O expansion. It has the breakthrough I/O density and the lowest cost per I/O. The device I/O features have the integrated support for latest industry standard I/O. The MachXO3L/LF family of low power, instant-on, non-volatile PLDs has five devices with densities ranging from 640 to 9400 Look-Up Tables (LUTs). In addition to LUT-based, low-cost programmable logic these devices feature Embedded Block RAM (EBR), Distributed RAM, Phase Locked Loops (PLLs), pre-engineered source synchronous I/O support, advanced configuration support including dual-boot capability and hardened versions of commonly used functions such as SPI controller, I2C controller and timer/counter. MachXO3LF devices also support User Flash Memory (UFM). These features allow these devices to be used in low cost, high volume applications such as consumer electronics, compute and storage, wireless communications, industrial control, and automotive systems. The MachXO3L/LF devices are designed on a 65 nm non-volatile low power process. The device architecture has several features such as programmable low swing differential I/O and the ability to turn off I/O banks, on-chip PLLs and oscillators dynamically. These features help manage static and dynamic power consumption resulting in low static power for all members of the family. The MachXO3L/LF devices are available in two versions C and E with two speed grades: -5 and -6, with -6 being the fastest. C devices have an internal linear voltage regulator which supports external VCC supply voltages of 3.3 V or 2.5 V. E devices only accept 1.2 V as the external VCC supply voltage. With the exception of power supply voltage both C and E are functionally compatible with each other. The MachXO3L/LF PLDs are available in a broad range of advanced halogen-free packages ranging from the space saving 2.5 x 2.5 mm WLCSP to the 19 x 19 mm caBGA. MachXO3L/LF devices support density migration within the same package. Table 1.1 shows the LUT densities, package and I/O options, along with other key parameters. The MachXO3L/LF devices offer enhanced I/O features such as drive strength control, slew rate control, PCI compatibility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. Pull-up, pull-down and bus-keeper features are controllable on a “per-pin” basis. A user-programmable internal oscillator is included in MachXO3L/LF devices. The clock output from this oscillator may be divided by the timer/counter for use as clock input in functions such as LED control, keyboard scanner and similar state machines. The MachXO3L/LF devices also provide flexible, reliable and secure configuration from on-chip NVCM/Flash. These devices can also configure themselves from external SPI Flash or be configured by an external master through the JTAG test access port or through the I²C port. Additionally, MachXO3L/LF devices support dual-boot capability (using external Flash memory) and remote field upgrade (TransFR) capability. Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the MachXO3L/LF family of devices. Popular logic synthesis tools provide synthesis library support for MachXO3L/LF. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the MachXO3L/LF device. These tools extract the timing from the routing and back-annotate it into the design for timing verification. Lattice provides many pre-engineered IP (Intellectual Property) LatticeCORE™ modules, including a number of reference designs licensed free of charge, optimized for the MachXO3L/LF PLD family. By using these configurable soft core IP cores as standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their productivity. Features
Smallest footprint, lowest power, high data throughput bridging solutions for mobile applications Optimized footprint, logic density, I/O count, I/O performance devices for I/O management and logic applications High I/O logic, lowest cost I/O, high I/O devices for I/O expansion applications
Logic Density ranging from 64 to 9.4 k LUT4 High I/O to LUT ratio with up to 384 I/O pins
0.4 mm pitch: 1 k to 4 k densities in very small footprint WLCSP (2.5 mm × 2.5 mm to 3.8 mm × 3.8 mm) with 28 to 63 I/O 0.5 mm pitch: 640 to 9.4 k LUT densities in 6 mm x 6 mm to 10 mm x 10 mm BGA packages with up to281 I/O 0.8 mm pitch: 1 k to 9.4 k densities with up to 384 I/O in BGA packages
DDR registers in I/O cells Dedicated gearing logic 7:1 Gearing for Display I/O Generic DDR, DDRx2, DDRx4
Programmable sysI/O™ buffer supports wide range of interfaces: LVCMOS 3.3/2.5/1.8/1.5/1.2 LVTTL LVDS, Bus-LVDS, MLVDS, LVPECL MIPI D-PHY Emulated Schmitt trigger inputs, up to 0.5 V hysteresis Ideal for I/O bridging applications I/O support hot socketing On-chip differential termination Programmable pull-up or pull-down mode
Eight primary clocks Up to two edge clocks for high-speed I/O interfaces (top and bottom sides only) Up to two analog PLLs per device with fractional-n frequency synthesis Wide input frequency range (7 MHz to 400 MHz).
Instant-on Powers up in microseconds Optional dual boot with external SPI memory Single-chip, secure solution Programmable through JTAG, SPI or I2C MachXO3L includes multi-time programmable NVCM MachXO3LF reconfigurable Flash includes 100,000 write/erase cycle for commercial/industrial devices and 10,000 for automotive devices Supports background programming of non volatile memory
In-field logic update while I/O holds the system state
On-chip hardened functions: SPI, I2C, timer/counter On-chip oscillator with 5.5% accuracy for commercial/industrial devices Unique TraceID for system tracking Single power supply with extended operatingrange IEEE Standard 1149.1 boundary scan IEEE 1532 compliant in-system programming
Consumer Electronics Compute and Storage Wireless Communications Industrial Control Systems Automotive System
Migration from the Flash based MachXO3LF to the NVCM based MachXO3L Pin compatible and equivalent timing How to choose FPGA for your project?
|
6422
|
256-LFBGA
|
|
||||||||||||||||||||||||||
ECP2M Field Programmable Gate Array (FPGA) IC 372 4246528 48000 672-BBGA
|
7000
|
672-BBGA
|
|
||||||||||||||||||||||||||
CrossLink-NX™ Field Programmable Gate Array (FPGA) IC 72 1548288 39000 121-VFBGA, CSPBGA General Description CrossLink™-NX family of low-power FPGAs can be used in a wide range of applications, and are optimized for bridging and processing needs in Embedded Vision applications – supporting a variety of high bandwidth sensor and display interfaces, video processing and machine learning inferencing. It is built on Lattice Nexus FPGA platform, using low-power 28 nm FD-SOI technology. It combines the extreme flexibility of an FPGA with the low power and high reliability (due to extremely low SER) of FD-SOI technology, and offers small footprint package options. CrossLink-NX supports a variety of interfaces including MIPI D-PHY (CSI-2, DSI), LVDS, SLVS, subLVDS, PCI Express (Gen1, Gen2), SGMII (Gigabit Ethernet), and more. Processing features of CrossLink-NX include up to 39K Logic Cells, 56 18x18 multipliers, 2.9 Mb of embedded memory (consisting of EBR and LRAM blocks), distributed memory, DRAM interfaces (supporting DDR3, DDR3L, LPDDR2, and LPDDR3 up to 1066 Mbps x16 data width). CrossLink-NX FPGAs support fast configuration of its reconfigurable SRAM-based logic fabric, and ultra-fast configuration (in under 3 ms) of its programmable sysI/O™. Security features to secure user designs include bitstream encryption and password protection. In addition to the high reliability inherent to FD-SOI technology (due to its extremely low SER), active reliability features such as built-in frame-based SED/SEC (for SRAM-based logic fabric), and ECC (for EBR and LRAM) are also supported. Built-in ADC is available in each device for system monitoring functions. Lattice Radiant™ design software allows large complex user designs to be efficiently implemented on CrossLink-NX FPGA family. Synthesis library support for CrossLink-NX devices is available for popular logic synthesis tools. Radiant tools use the synthesis tool output along with constraints from its floor planning tools, to place and route the user design in CrossLink-NX device. The tools extract timing from the routing, and back-annotate it into the design for timing verification. Lattice provides many pre-engineered IP (Intellectual Property) modules for CrossLink-NX family. By using these configurable soft IP cores as standardized blocks, you are free to concentrate on the unique aspects of your design, increasing your productivity. Features
17K to 39K logic cells 24 to 56 18 x 18 multipliers (in sysDSP™ blocks) 2.5 to 2.9 Mb of embedded memory blocks (EBR, LRAM) 36 to 192 programmable sysI/O (High Performance and Wide Range I/O)
Up to two hardened 4-lane MIPI D-PHY interfaces Up to eight lanes total Transmit or receive Supports CSI-2, DSI 20 Gbps aggregate bandwidth 2.5 Gbps per lane, 10 Gbps per D-PHY interface Additional Soft D-PHY interfaces supported by High Performance (HP) sysI/O Transmit or receive Supports CSI-2, DSI Up to 1.5 Gbps per lane
High Performance (HP) on bottom I/O dual rank Supports up to 1.8 V VCCIO Mixed voltage support (1.0 V, 1.2 V, 1.5 V, 1.8 V) High-speed differential up to 1.5 Gbps Supports soft D-PHY (Tx/Rx), LVDS 7:1 (Tx/Rx), SLVS (Tx/Rx), subLVDS (Rx) Supports SGMII (Gb Ethernet) – 2 channels (Tx/Rx) at 1.25 Gbps Dedicated DDR3/DDR3L and LPDDR2/LPDDR3 memory support with DQS logic, up to 1066 Mbps data-rate and x16 data-width Wide Range (WR) on Left, Right and Top I/O Banks Supports up to 3.3 V VCCIO Mixed voltage support (1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.3 V) Programmable slew rate (slow, med, fast) Controlled impedance mode Emulated LVDS support Hot-socketing
User selectable Low-Power mode for power and/or thermal challenges High-Performance mode for faster processing
4 x 4 mm2to 10 x 10 mm2 package options
CDR for RX 8b/10b decoding Independent Loss of Lock (LOL) detector for each CDR block
Three in 39K LC and two in 17K LC device Six outputs per PLL Fractional N Programmable and dynamic phase control
Hardened pre-adder Dynamic Shift for AI/ML support Four 18 x 18, eight 9 x 9, two 18 x 36, or 36 x 36 Advanced 18 x 36, two 18 x 18, or four 8 x 8 MAC
Up to 1.5 Mb sysMEM™ Embedded Block RAM EBR) Programmable width ECC FIFO 80k to 240k bits distributed RAM Large RAM Blocks 0.5 Mbits per block Up to five blocks (2.5 Mb total) per device
Hard IP supports Gen1, Gen2, Multi-Function, End Point, Root Complex APB control bus AHB-Lite for data bus
APB control bus AHB-Lite for data bus AXI4-streaming
SPI – x1, x2, x4 up to 150 MHz Master and Slave SPI support JTAG I²C and I3C Ultrafast I/O configuration for instant-on support Less than 15 ms full device configuration for LIFCL-40 Bitstream Security Encryption
Bitstream encryption – using AES-256 Bitstream authentication – using ECDSA Hashing algorithms – SHA, HMAC True Random Number Generator AES 128/256 Encryption
Extremely low Soft Error Rate (SER) due to FD SOI technology Soft Error Detect – Embedded hard macro Soft Error Correction – Without stopping user operation Soft Error Injection – Emulate SEU event to debug system error handling
2 ADCs per device 3 Continuous-time Comparators Simultaneous sampling
IEEE 1149.1 and IEEE 1532 compliant Reveal Logic Analyzer On-chip oscillator for initialization and general use 1.0 V core power supply How to choose FPGA for your project?
|
484
|
121-VFBGA, CSPBGA
|
|
||||||||||||||||||||||||||
ECP2M Field Programmable Gate Array (FPGA) IC 436 4642816 67000 1152-BBGA
|
1166
|
1152-BBGA
|
|
||||||||||||||||||||||||||
Certus™-NX Field Programmable Gate Array (FPGA) IC 192 1548288 39000 256-LFBGA General Description The Certus™-NX family of low-power general purpose FPGAs can be used in a wide range of applications across multiple markets, and are optimized for bridging and processing needs in Edge applications. It is built on the Lattice Nexus™ FPGA platform, using low-power 28nm FD-SOI technology. It combines the extreme flexibility of an FPGA with the low power and high reliability (due to extremely low SER) of FD-SOI technology, and offer small footprint package options with a high amount of I/O per mm2. Design security features such as AES-256 encryption and ECDSA authentication are also supported. Certus-NX supports a variety of interfaces including PCI Express (Gen1, Gen2), SGMII (Gigabit Ethernet), LVDS, LVCMOS (0.9–3.3 V), and more. Processing features of Certus-NX include up to 39k Logic Cells, 56 18 × 18 multipliers, 2.9 Mb of embedded memory (consisting of EBR and LRAM blocks), distributed memory, DRAM interfaces (supporting DDR3, DDR3L, LPDDR2, and LPDDR3 up to 1066 Mbps × 16 data width). Certus-NX FPGAs support fast configuration of its reconfigurable SRAM-based logic fabric, and ultra-fast configuration (in under 3 ms) of its programmable sysI/O™. In addition to the high reliability inherent to FD-SOI technology (due to its extremely low SER), active reliability features such as built-in frame-based SED/SEC (for SRAM-based logic fabric), and ECC (for EBR and LRAM) are also supported. Dual 12-bit ADCs are available on-chip for system monitoring functions. Lattice Radiant™ design software allows large complex user designs to be efficiently implemented on Certus-NX FPGA family. Synthesis library support for Certus-NX devices is available for popular logic synthesis tools. Radiant tools use the synthesis tool output along with constraints from its floor planning tools, to place and route the user design in Certus-NX device. The tools extract timing from the routing, and back-annotate it into the design for timing verification. Lattice provides many pre-engineered IP (Intellectual Property) modules for Certus-NX family. By using these configurable soft IP cores as standardized blocks, you are free to concentrate on the unique aspects of your design, increasing your productivity. Features
17 k to 39 k logic cells 24 to 56 18 × 18 multipliers (in sysDSP™ blocks) 2.5 to 2.9 Mb of embedded memory blocks (EBR, LRAM) 78 to 192 programmable sysI/O (High Performance and Wide Range I/O)
High Performance (HP) I/O on bottom I/O banks Supports up to 1.8 V VCCIO Mixed voltage support (1.0 V, 1.2 V, 1.5 V, 1.8 V) High-speed differential up to 1.5 Gbps Supports LVDS, Soft D-PHY (Tx/Rx), LVDS 7:1 (Tx/Rx), SLVS (Tx/Rx), subLVDS (Rx) Supports SGMII (Gb Ethernet) – 2 channels (Tx/Rx) at 1.25 Gbps Dedicated DDR3/DDR3L and LPDDR2/LPDDR3 memory support with DQS logic, up to 1066 Mbps data-rate and x16 data-width Wide Range (WR) I/O on left, right, and top I/O Bank Supports up to 3.3 V VCCIO Mixed voltage support (1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.3 V) Programmable slew rate (slow, med, fast*) Controlled impedance mode Emulated LVDS support Hot-socketing
User selectable Low-Power mode for power and/or thermal challenges High-Performance mode for faster processing
6 mm × 6 mm package option in both densities
CDR for RX 10b/8b decoding Independent Loss of Lock (LOL) detector for each CDR block *Note: Except caBGA196.
Three in 39k LC and two in 17k LC device Six outputs per PLL Fractional N Programmable and dynamic phase control
Hardened pre-adder Dynamic shift for AI/ML support Four 18 × 18, eight 9 × 9, two 18 × 36, or 36 × 36 multipliers Advanced 18 × 36, two 18 × 18, or four 8 × 8 MAC
Up to 1.5 Mb sysMEM™ Embedded Block RAM (EBR) Programmable width ECC FIFO 80k to 240k bits distributed RAM Large RAM Blocks 0.5 Mbits per block Up to five blocks (2.5 Mb total) per device
PCIe hard IP supports Gen1 and Gen2 Endpoint and Root complex Multi-function up to four functions x1 lane
APB control bus AHB-Lite for data bus AXI4-streaming
SPI – x1, x2, x4 up to 150 MHz Master and Slave SPI support JTAG I2C and I3C Ultrafast I/O configuration for instant-on support Less than 15 ms full device configuration for LFD2NX-40
Bitstream encryption – using AES-256 Bitstream authentication – using ECDSA Hashing algorithms – SHA, HMAC True Random Number Generator AES 128/256 Encryption
Extremely low Soft Error Rate (SER) due to FD-SOI technology Soft Error Detect – Embedded hard macro Soft Error Correction – Without stopping user operation Soft Error Injection – Emulate SEU event to debug system error handling
Two ADCs per device Three Continuous-time Comparators Simultaneous sampling
IEEE 1149.1 and IEEE 1532 compliant Reveal Logic Analyzer On-chip oscillator for initialization and general use 1.0 V core power supply How to choose FPGA for your project?
|
24
|
256-LFBGA
|
|
||||||||||||||||||||||||||
ECP2M Field Programmable Gate Array (FPGA) IC 416 4642816 67000 900-BBGA
|
8911
|
900-BBGA
|
|
||||||||||||||||||||||||||
ECP3 Field Programmable Gate Array (FPGA) IC 116 716800 17000 328-LFBGA, CSBGA
|
8417
|
328-LFBGA, CSBGA
|
|
||||||||||||||||||||||||||
ECP3 Field Programmable Gate Array (FPGA) IC 295 1358848 33000 484-BBGA
|
5357
|
484-BBGA
|
|
||||||||||||||||||||||||||
ECP3 Field Programmable Gate Array (FPGA) IC 380 4526080 67000 672-BBGA
|
1967
|
672-BBGA
|
|
||||||||||||||||||||||||||
SC Field Programmable Gate Array (FPGA) IC 942 7987200 115000 1704-BBGA, FCBGA
|
1700
|
1704-BBGA, FCBGA
|
|
||||||||||||||||||||||||||
SC Field Programmable Gate Array (FPGA) IC 378 1966080 25000 900-BBGA
|
6761
|
900-BBGA
|
|
||||||||||||||||||||||||||