FIRST ORDER
FREE 10% DISCOUNT
Img
|
Pdf
|
Part Number
|
Manufacturers
|
Desc
|
In Stock
|
Packing
|
Rfq
|
||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Transceiver, Inverting 1 Element 8 Bit per Element 3-State Output 24-SO
|
2987
|
24-SOIC (0.295", 7.50mm Width)
|
|
||||||||||||||||||||||||||
- Microcontroller IC 28-SOIC
|
4263
|
28-SOIC (0.295", 7.50mm Width)
|
|
||||||||||||||||||||||||||
S08 S08 Microcontroller IC 8-Bit 40MHz 128KB (128K x 8) FLASH 48-LQFP (7x7)
|
5956
|
48-LQFP
|
|
||||||||||||||||||||||||||
I/O Expander 16 I²C, SMBus 400 kHz 24-TSSOP
|
2770
|
24-TSSOP (0.173", 4.40mm Width)
|
|
||||||||||||||||||||||||||
e200z2, e200z4, e200z4 MPC57xx Microcontroller IC 32-Bit Tri-Core 80MHz/160MHz 6MB (6M x 8) FLASH 176-LQFP (24x24)
|
1972
|
176-LQFP Exposed Pad
|
|
||||||||||||||||||||||||||
e200z4 MPC57xx Microcontroller IC 32-Bit Single-Core 160MHz 3MB (3M x 8) FLASH 100-MAPBGA (11x11)
|
4342
|
100-LFBGA
|
|
||||||||||||||||||||||||||
N-Channel 40 V 100A (Tc) 238W (Tc) Surface Mount LFPAK56, Power-SO8
|
1470
|
SC-100, SOT-669
|
|
||||||||||||||||||||||||||
Decoder/Demultiplexer 1 x 3:8 16-SO
|
4
|
16-SOIC (0.154", 3.90mm Width)
|
|
||||||||||||||||||||||||||
HCS12X HCS12X Microcontroller IC 16-Bit 40MHz 128KB (128K x 8) FLASH 80-QFP (14x14) MC9S12XS256 Covers MC9S12XS Family MC9S12XS256 MC9S12XS128 MC9S12XS64 MC9S12XS256 Introduction The new S12XS family of 16-bit micro controllers is a compatible, reduced version of the S12XE family. These families provide an easy approach to develop common platforms from low-end to high-end applications, minimizing the redesign of software and hardware. Targeted at generic automotive applications and CAN nodes, some typical examples of these applications are: Body Controllers, Occupant Detection, Door Modules, RKE Receivers, Smart Actuators,Lighting Modules and Smart Junction Boxes amongst many others. The S12XS family retains many of the features of the S12XE family including Error Correction Code (ECC) on Flash memory, a separate Data-Flash Module for code or data storage, a Frequency Modulated Locked Loop (IPLL) that improves the EMC performance and a fast ATD converter. s12XS family delivers 32-bit performance with all the advantages and efficiencies ofa 16-bit MCU while retaining the low cost, power consumption, EMC and code-size efficiency advantages currently enjoyed by users of Freescale's existing 16-bit S12and S12X MCU families. Like members of other S12X families, the S12XS family runs 16-bit wide accesses without wait states for all peripherals and memories. The S12XS family is available in 112-pinLQFP,80-pin QFP,64-pin LQFP package options and maintains a high level of pin compatibility with the S12XE family. In addition to the I/O ports available in each module, up to 18 further I/O ports are available with interrupt capability allowing Wake-Up from stop or wait modes. The peripheral set includes MSCAN, SPI, two SCIs, an 8-channe1 24-bit periodic interrupt timer, 8- channel 16-bit Timer, 8-channel PWM and up to 16- channel 12-bit ATD converter. Software controlled peripheral-to-port routing enables access to a flexible mix of the peripheral modules in the lower pin count package options. Features • 16-bit CPU12X — Upward compatible with S12 instruction set with the exception of five Fuzzy instructions (MEM, WAV, WAVR, REV, REVW) which have been removed — Enhanced indexed addressing — Access to large data segments independent of PPAGE • INT (interrupt module) — Seven levels of nested interrupts — Flexible assignment of interrupt sources to each interrupt level. — External non-maskable high priority interrupt (XIRQ) — The following inputs can act as Wake-up Interrupts – IRQ and non-maskable XIRQ – CAN receive pins – SCI receive pins – Depending on the package option up to 20 pins on ports J, H and P configurable as rising or falling edge sensitive • MMC (module mapping control) • DBG (debug module) — Monitoring of CPU bus with tag-type or force-type breakpoint requests — 64 x 64-bit circular trace buffer captures change-of-flow or memory access information • BDM (background debug mode) • OSC_LCP (oscillator) — Low power loop control Pierce oscillator utilizing a 4MHz to 16MHz crystal — Good noise immunity — Full-swing Pierce option utilizing a 2MHz to 40MHz crystal — Transconductance sized for optimum start-up margin for typical crystals • IPLL (Internally filtered, frequency modulated phase-locked-loop clock generation) — No external components required — Configurable option to spread spectrum for reduced EMC radiation (frequency modulation) • CRG (clock and reset generation) — COP watchdog — Real time interrupt — Clock monitor — Fast wake up from STOP in self clock mode • Memory Options — 64, 128 and 256 Kbyte Flash — Flash General Features – 64 data bits plus 8 syndrome ECC (Error Correction Code) bits allow single bit failure correction and double fault detection – Erase sector size 1024 bytes – Automated program and erase algorithm – Protection scheme to prevent accidental program or erase – Security option to prevent unauthorized access – Sense-amp margin level setting for reads — 4 and 8 Kbyte Data Flash space – 16 data bits plus 6 syndrome ECC (Error Correction Code) bits allow single bit failure correction and double fault detection – Erase sector size 256 bytes – Automated program and erase algorithm — 4, 8 and 12 Kbyte RAM • 16-channel, 12-bit Analog-to-Digital converter — 8/10/12 Bit resolution — 3µs, 10-bit single conversion time — Left or right justified result data — External and internal conversion trigger capability — Internal oscillator for conversion in Stop modes — Wake from low power modes on analog comparison > or <= match — Continuous conversion mode — Multiplexer for 16 analog input channels — Multiple channel scans — Pins can also be used as digital I/O • MSCAN (1 M bit per second, CAN 2.0 A, B software compatible module) — 1 Mbit per second, CAN 2.0 A, B software compatible module – Standard and extended data frames – 0 - 8 bytes data length – Programmable bit rate up to 1 Mbps — Five receive buffers with FIFO storage scheme — Three transmit buffers with internal prioritization — Flexible identifier acceptance filter programmable as: – 2 x 32-bit – 4 x 16-bit – 8 x 8-bit — Wake-up with integrated low pass filter option — Loop back for self test — Listen-only mode to monitor CAN bus — Bus-off recovery by software intervention or automatically — 16-bit time stamp of transmitted/received messages • TIM (standard timer module) — 8 x 16-bit channels for input capture or output compare — 16-bit free-running counter with 8-bit precision prescaler — 1 x 16-bit pulse accumulator • PIT (periodic interrupt timer) — Up to four timers with independent time-out periods — Time-out periods selectable between 1 and 224 bus clock cycles — Time-out interrupt and peripheral triggers — Start of timers can be aligned • Up to 8 channel x 8-bit or 4 channel x 16-bit Pulse Width Modulator — Programmable period and duty cycle per channel — Center- or left-aligned outputs — Programmable clock select logic with a wide range of frequencies • Serial Peripheral Interface Module (SPI) — Configurable for 8 or 16-bit data size — Full-duplex or single-wire bidirectional — Double-buffered transmit and receive — Master or Slave mode — MSB-first or LSB-first shifting — Serial clock phase and polarity options • Two Serial Communication Interfaces (SCI) — Full-duplex or single wire operation — Standard mark/space non-return-to-zero (NRZ) format — Selectable IrDA 1.4 return-to-zero-inverted (RZI) format with programmable pulse widths — 13-bit baud rate selection — Programmable character length — Programmable polarity for transmitter and receiver — Receive wakeup on active edge — Break detect and transmit collision detect supporting LIN • On-Chip Voltage Regulator — Two parallel, linear voltage regulators with bandgap reference — Low-voltage detect (LVD) with low-voltage interrupt (LVI) — Power-on reset (POR) circuit — Low-voltage reset (LVR) • Low-power wake-up timer (API) — Internal oscillator driving a down counter — Trimmable to +/-5% accuracy — Time-out periods range from 0.2ms to ~13s with a 0.2ms resolution • Input/Output — Up to 91 general-purpose input/output (I/O) pins depending on the package option and 2 inputonly pins — Hysteresis and configurable pull up/pull down device on all input pins — Configurable drive strength on all output pins • Package Options — 112-pin low-profile quad flat-pack (LQFP) — 80-pin quad flat-pack (QFP) — 64-pin low-profile quad flat-pack (LQFP) • Operating Conditions — Wide single Supply Voltage range 3.135 V to 5.5 V at full performance – Separate supply for internal voltage regulator and I/O allow optimized EMC filtering — 40MHz maximum CPU bus frequency — Ambient temperature range –40°C to 125°C — Temperature Options: – –40°C to 85°C – –40°C to 105°C – –40°C to 125°C |
5433
|
80-QFP
|
|
||||||||||||||||||||||||||
Buffer, Non-Inverting 4 Element 4 Bit per Element 3-State Output 48-TSSOP
|
3010
|
48-TFSOP (0.240", 6.10mm Width)
|
|
||||||||||||||||||||||||||
PowerPC G2 Microprocessor IC MPC82xx 1 Core, 32-Bit 200MHz 480-TBGA (37.5x37.5)
|
5339
|
480-LBGA Exposed Pad
|
|
||||||||||||||||||||||||||
S08 S08 Microcontroller IC 8-Bit 20MHz 8KB (8K x 8) FLASH 32-LQFP (7x7)
|
1
|
32-LQFP
|
|
||||||||||||||||||||||||||
RF Mosfet 28 V 110 mA 700MHz ~ 2.2GHz 27dB 2W 12-HVSON (4x6)
|
4649
|
12-VDFN Exposed Pad
|
|
||||||||||||||||||||||||||
Microprocessor IC *
|
7421
|
|
|||||||||||||||||||||||||||
e200z7 MPC57xx Microcontroller IC 32-Bit Tri-Core 264MHz 8MB (8M x 8) FLASH 416-MAPBGA (27x27)
|
262
|
416-BGA
|
|
||||||||||||||||||||||||||
Flip Flop 2 Element JK Type 1 Bit Negative Edge 14-SSOP (0.209", 5.30mm Width)
|
1
|
14-SSOP (0.209", 5.30mm Width)
|
|
||||||||||||||||||||||||||
Counter IC Binary Counter 1 Element 12 Bit Negative Edge 16-SSOP
|
2
|
16-SSOP (0.209", 5.30mm Width)
|
|
||||||||||||||||||||||||||
HCS12X HCS12X Microcontroller IC 16-Bit 50MHz 128KB (128K x 8) FLASH 80-QFP (14x14) MC9S12XEP100 Covers MC9S12XE Family Introduction The MC9S12XE-Family of micro controllers is a further development of the S12XD-Family including new features for enhanced system integrity and greater functionality. These new features include a Memory Protection Unit (MPU) and Error Correction Code (ECC) on the Flash memory together with enhanced EEPROM functionality (EEE), an enhanced XGATE, an Internally filtered, frequency modulated Phase Locked Loop (IPLL) and an enhanced ATD. The E-Family extends the S12X product range up to 1MB of Flash memory with increased I/O capability in the 208-pin version of the flagship MC9S12XE100. The MC9S12XE-Family delivers 32-bit performance with all the advantages and efficiencies of a 16 bit MCU. It retains the low cost, power consumption, EMC and code-size efficiency advantages currently enjoyed by users of Freescale’s existing 16-Bit MC9S12 and S12X MCU families. There is a high level of compatibility between the S12XE and S12XD families. The MC9S12XE-Family features an enhanced version of the performance-boosting XGATE co-processor which is programmable in “C” language and runs at twice the bus frequency of the S12X with an instruction set optimized for data movement, logic and bit manipulation instructions and which can service any peripheral module on the device. The new enhanced version has improved interrupt handling capability and is fully compatible with the existing XGATE module. The MC9S12XE-Family is composed of standard on-chip peripherals including up to 64Kbytes of RAM, eight asynchronous serial communications interfaces (SCI), three serial peripheral interfaces (SPI), an 8- channel IC/OC enhanced capture timer (ECT), two 16-channel, 12-bit analog-to-digital converters, an 8- channel pulse-width modulator (PWM), five CAN 2.0 A, B software compatible modules (MSCAN12), two inter-IC bus blocks (IIC), an 8-channel 24-bit periodic interrupt timer (PIT) and an 8-channel 16-bit standard timer module (TIM). The MC9S12XE-Family uses 16-bit wide accesses without wait states for all peripherals and memories. The non-multiplexed expanded bus interface available on the 144/208-Pin versions allows an easy interface to external memories. In addition to the I/O ports available in each module, up to 26 further I/O ports are available with interrupt capability allowing Wake-Up from STOP or WAIT modes. The MC9S12XE-Family is available in 208- Pin MAPBGA, 144-Pin LQFP, 112-Pin LQFP or 80-Pin QFP options. Features • 16-Bit CPU12X — Upward compatible with MC9S12 instruction set with the exception of five Fuzzy instructions (MEM, WAV, WAVR, REV, REVW) which have been removed — Enhanced indexed addressing — Access to large data segments independent of PPAGE • INT (interrupt module) — Eight levels of nested interrupts — Flexible assignment of interrupt sources to each interrupt level. — External non-maskable high priority interrupt (XIRQ) — Internal non-maskable high priority Memory Protection Unit interrupt — Up to 24 pins on ports J, H and P configurable as rising or falling edge sensitive interrupts • EBI (external bus interface)(available in 208-Pin and 144-Pin packages only) — Up to four chip select outputs to select 16K, 1M, 2M and up to 4MByte address spaces — Each chip select output can be configured to complete transaction on either the time-out of one of the two wait state generators or the deassertion of EWAIT signal • MMC (module mapping control) • DBG (debug module) — Monitoring of CPU and/or XGATE busses with tag-type or force-type breakpoint requests — 64 x 64-bit circular trace buffer captures change-of-flow or memory access information • BDM (background debug mode) • MPU (memory protection unit) — 8 address regions definable per active program task — Address range granularity as low as 8-bytes — No write / No execute Protection Attributes — Non-maskable interrupt on access violation • XGATE — Programmable, high performance I/O coprocessor module — Transfers data to or from all peripherals and RAM without CPU intervention or CPU wait states — Performs logical, shifts, arithmetic, and bit operations on data — Can interrupt the HCS12X CPU signalling transfer completion — Triggers from any hardware module as well as from the CPU possible — Two interrupt levels to service high priority tasks — Hardware support for stack pointer initialisation • OSC_LCP (oscillator) — Low power loop control Pierce oscillator utilizing a 4MHz to 16MHz crystal — Good noise immunity — Full-swing Pierce option utilizing a 2MHz to 40MHz crystal — Transconductance sized for optimum start-up margin for typical crystals • IPLL (Internally filtered, frequency modulated phase-locked-loop clock generation) — No external components required — Configurable option to spread spectrum for reduced EMC radiation (frequency modulation) • CRG (clock and reset generation) — COP watchdog — Real time interrupt — Clock monitor — Fast wake up from STOP in self clock mode • Memory Options — 128K, 256k, 384K, 512K, 768K and 1M byte Flash — 2K, 4K byte emulated EEPROM — 12K, 16K, 24K, 32K, 48K and 64K Byte RAM • Flash General Features — 64 data bits plus 8 syndrome ECC (Error Correction Code) bits allow single bit failure correction and double fault detection — Erase sector size 1024 bytes — Automated program and erase algorithm • D-Flash Features — Up to 32 Kbytes of D-Flash memory with 256 byte sectors for user access. — Dedicated commands to control access to the D-Flash memory over EEE operation. — Single bit fault correction and double bit fault detection within a word during read operations. — Automated program and erase algorithm with verify and generation of ECC parity bits. — Fast sector erase and word program operation. — Ability to program up to four words in a burst sequence • Emulated EEPROM Features — Automatic EEE file handling using an internal Memory Controller. — Automatic transfer of valid EEE data from D-Flash memory to buffer RAM on reset. — Ability to monitor the number of outstanding EEE related buffer RAM words left to be programmed into D-Flash memory. — Ability to disable EEE operation and allow priority access to the D-Flash memory. — Ability to cancel all pending EEE operations and allow priority access to the D-Flash memory. • Two 16-channel, 12-bit Analog-to-Digital Converters — 8/10/12 Bit resolution — 3µs, 10-bit single conversion time — Left/right, signed/unsigned result data — External and internal conversion trigger capability — Internal oscillator for conversion in Stop modes — Wake from low power modes on analog comparison > or <= match • Five MSCAN (1 M bit per second, CAN 2.0 A, B software compatible modules) — Five receive and three transmit buffers — Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit, or 8 x 8 bit — Four separate interrupt channels for Rx, Tx, error, and wake-up — Low-pass filter wake-up function — Loop-back for self-test operation • ECT (enhanced capture timer) — 8 x 16-bit channels for input capture or output compare — 16-bit free-running counter with 8-bit precision prescaler — 16-bit modulus down counter with 8-bit precision prescaler — Four 8-bit or two 16-bit pulse accumulators • TIM (standard timer module) — 8 x 16-bit channels for input capture or output compare — 16-bit free-running counter with 8-bit precision prescaler — 1 x 16-bit pulse accumulator • PIT (periodic interrupt timer) — Up to eight timers with independent time-out periods — Time-out periods selectable between 1 and 224 bus clock cycles — Time-out interrupt and peripheral triggers • 8 PWM (pulse-width modulator) channels — 8 channel x 8-bit or 4 channel x 16-bit Pulse Width Modulator — programmable period and duty cycle per channel — Center- or left-aligned outputs — Programmable clock select logic with a wide range of frequencies — Fast emergency shutdown input • Three Serial Peripheral Interface Modules (SPI) — Configurable for 8 or 16-bit data size • Eight Serial Communication Interfaces (SCI) — Standard mark/space non-return-to-zero (NRZ) format — Selectable IrDA 1.4 return-to-zero-inverted (RZI) format with programmable pulse widths • Two Inter-IC bus (IIC) Modules — Multi-master operation — Software programmable for one of 256 different serial clock frequencies — Broadcast mode support — 10-bit address support • On-Chip Voltage Regulator — Two parallel, linear voltage regulators with bandgap reference — Low-voltage detect (LVD) with low-voltage interrupt (LVI) — Power-on reset (POR) circuit — 3.3V and 5V range operation — Low-voltage reset (LVR) • Low-power wake-up timer (API) — Available in all modes including Full Stop Mode — Trimmable to +-5% accuracy — Time-out periods range from 0.2ms to ~13s with a 0.2ms resolution • Input/Output — Up to 152 general-purpose input/output (I/O) pins plus 2 input-only pins — Hysteresis and configurable pull up/pull down device on all input pins — Configurable drive strength on all output pins • Package Options — 208-pin MAPBGA — 144-pin low-profile quad flat-pack (LQFP) — 112-pin low-profile quad flat-pack (LQFP) — 80-pin quad flat-pack (QFP) • 50MHz maximum CPU bus frequency, 100MHz maximum XGATE bus frequency |
3201
|
80-QFP
|
|
||||||||||||||||||||||||||
Shift Shift Register 1 Element 8 Bit 16-DIP
|
6611
|
16-DIP (0.300", 7.62mm)
|
|
||||||||||||||||||||||||||
MPC8xx Microprocessor IC MPC8xx 1 Core, 32-Bit 66MHz 256-PBGA (23x23)
|
4666
|
256-BGA
|
|
||||||||||||||||||||||||||
S08 S08 Microcontroller IC 8-Bit 40MHz 64KB (64K x 8) FLASH 64-LQFP (10x10)
|
3031
|
64-LQFP
|
|
||||||||||||||||||||||||||
Buck Switching Regulator IC Positive Programmable 1.2V, 1.5V 1 Output 650mA 6-XFBGA, WLCSP
|
1961
|
6-XFBGA, WLCSP
|
|
||||||||||||||||||||||||||
Microprocessor IC *
|
1219
|
|
|||||||||||||||||||||||||||
Power Switch/Driver 1:1 N-Channel 5.5A, 11A 54-HSOP
|
3008
|
54-SSOP (0.295", 7.50mm Width) Exposed Pad
|
|
||||||||||||||||||||||||||
AND Gate IC 1 Channel 6-XSON (1x1)
|
97
|
6-XFDFN
|
|
||||||||||||||||||||||||||
Zener Diode
|
6459
|
|
|||||||||||||||||||||||||||
HCS12X HCS12X Microcontroller IC 16-Bit 50MHz 384KB (384K x 8) FLASH 80-QFP (14x14) Introduction The MC9S12XE-Family of micro controllers is a further development of the S12XD-Family including new features for enhanced system integrity and greater functionality. These new features include a Memory Protection Unit (MPU) and Error Correction Code (ECC) on the Flash memory together with enhanced EEPROM functionality (EEE), an enhanced XGATE, an Internally filtered, frequency modulated Phase Locked Loop (IPLL) and an enhanced ATD. The E-Family extends the S12X product range up to 1MB of Flash memory with increased I/O capability in the 208-pin version of the flagship MC9S12XE100. The MC9S12XE-Family delivers 32-bit performance with all the advantages and efficiencies of a 16 bit MCU. It retains the low cost, power consumption, EMC and code-size efficiency advantages currently enjoyed by users of Freescale’s existing 16-Bit MC9S12 and S12X MCU families. There is a high level of compatibility between the S12XE and S12XD families. The MC9S12XE-Family features an enhanced version of the performance-boosting XGATE co-processor which is programmable in “C” language and runs at twice the bus frequency of the S12X with an instruction set optimized for data movement, logic and bit manipulation instructions and which can service any peripheral module on the device. The new enhanced version has improved interrupt handling capability and is fully compatible with the existing XGATE module. The MC9S12XE-Family is composed of standard on-chip peripherals including up to 64Kbytes of RAM, eight asynchronous serial communications interfaces (SCI), three serial peripheral interfaces (SPI), an 8- channel IC/OC enhanced capture timer (ECT), two 16-channel, 12-bit analog-to-digital converters, an 8- channel pulse-width modulator (PWM), five CAN 2.0 A, B software compatible modules (MSCAN12), two inter-IC bus blocks (IIC), an 8-channel 24-bit periodic interrupt timer (PIT) and an 8-channel 16-bit standard timer module (TIM). The MC9S12XE-Family uses 16-bit wide accesses without wait states for all peripherals and memories. The non-multiplexed expanded bus interface available on the 144/208-Pin versions allows an easy interface to external memories. In addition to the I/O ports available in each module, up to 26 further I/O ports are available with interrupt capability allowing Wake-Up from STOP or WAIT modes. The MC9S12XE-Family is available in 208- Pin MAPBGA, 144-Pin LQFP, 112-Pin LQFP or 80-Pin QFP options. Features • 16-Bit CPU12X — Upward compatible with MC9S12 instruction set with the exception of five Fuzzy instructions (MEM, WAV, WAVR, REV, REVW) which have been removed — Enhanced indexed addressing — Access to large data segments independent of PPAGE • INT (interrupt module) — Eight levels of nested interrupts — Flexible assignment of interrupt sources to each interrupt level. — External non-maskable high priority interrupt (XIRQ) — Internal non-maskable high priority Memory Protection Unit interrupt — Up to 24 pins on ports J, H and P configurable as rising or falling edge sensitive interrupts • EBI (external bus interface)(available in 208-Pin and 144-Pin packages only) — Up to four chip select outputs to select 16K, 1M, 2M and up to 4MByte address spaces — Each chip select output can be configured to complete transaction on either the time-out of one of the two wait state generators or the deassertion of EWAIT signal • MMC (module mapping control) • DBG (debug module) — Monitoring of CPU and/or XGATE busses with tag-type or force-type breakpoint requests — 64 x 64-bit circular trace buffer captures change-of-flow or memory access information • BDM (background debug mode) • MPU (memory protection unit) — 8 address regions definable per active program task — Address range granularity as low as 8-bytes — No write / No execute Protection Attributes — Non-maskable interrupt on access violation • XGATE — Programmable, high performance I/O coprocessor module — Transfers data to or from all peripherals and RAM without CPU intervention or CPU wait states — Performs logical, shifts, arithmetic, and bit operations on data — Can interrupt the HCS12X CPU signalling transfer completion — Triggers from any hardware module as well as from the CPU possible — Two interrupt levels to service high priority tasks — Hardware support for stack pointer initialisation • OSC_LCP (oscillator) — Low power loop control Pierce oscillator utilizing a 4MHz to 16MHz crystal — Good noise immunity — Full-swing Pierce option utilizing a 2MHz to 40MHz crystal — Transconductance sized for optimum start-up margin for typical crystals • IPLL (Internally filtered, frequency modulated phase-locked-loop clock generation) — No external components required — Configurable option to spread spectrum for reduced EMC radiation (frequency modulation) • CRG (clock and reset generation) — COP watchdog — Real time interrupt — Clock monitor — Fast wake up from STOP in self clock mode • Memory Options — 128K, 256k, 384K, 512K, 768K and 1M byte Flash — 2K, 4K byte emulated EEPROM — 12K, 16K, 24K, 32K, 48K and 64K Byte RAM • Flash General Features — 64 data bits plus 8 syndrome ECC (Error Correction Code) bits allow single bit failure correction and double fault detection — Erase sector size 1024 bytes — Automated program and erase algorithm • D-Flash Features — Up to 32 Kbytes of D-Flash memory with 256 byte sectors for user access. — Dedicated commands to control access to the D-Flash memory over EEE operation. — Single bit fault correction and double bit fault detection within a word during read operations. — Automated program and erase algorithm with verify and generation of ECC parity bits. — Fast sector erase and word program operation. — Ability to program up to four words in a burst sequence • Emulated EEPROM Features — Automatic EEE file handling using an internal Memory Controller. — Automatic transfer of valid EEE data from D-Flash memory to buffer RAM on reset. — Ability to monitor the number of outstanding EEE related buffer RAM words left to be programmed into D-Flash memory. — Ability to disable EEE operation and allow priority access to the D-Flash memory. — Ability to cancel all pending EEE operations and allow priority access to the D-Flash memory. • Two 16-channel, 12-bit Analog-to-Digital Converters — 8/10/12 Bit resolution — 3µs, 10-bit single conversion time — Left/right, signed/unsigned result data — External and internal conversion trigger capability — Internal oscillator for conversion in Stop modes — Wake from low power modes on analog comparison > or <= match • Five MSCAN (1 M bit per second, CAN 2.0 A, B software compatible modules) — Five receive and three transmit buffers — Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit, or 8 x 8 bit — Four separate interrupt channels for Rx, Tx, error, and wake-up — Low-pass filter wake-up function — Loop-back for self-test operation • ECT (enhanced capture timer) — 8 x 16-bit channels for input capture or output compare — 16-bit free-running counter with 8-bit precision prescaler — 16-bit modulus down counter with 8-bit precision prescaler — Four 8-bit or two 16-bit pulse accumulators • TIM (standard timer module) — 8 x 16-bit channels for input capture or output compare — 16-bit free-running counter with 8-bit precision prescaler — 1 x 16-bit pulse accumulator • PIT (periodic interrupt timer) — Up to eight timers with independent time-out periods — Time-out periods selectable between 1 and 224 bus clock cycles — Time-out interrupt and peripheral triggers • 8 PWM (pulse-width modulator) channels — 8 channel x 8-bit or 4 channel x 16-bit Pulse Width Modulator — programmable period and duty cycle per channel — Center- or left-aligned outputs — Programmable clock select logic with a wide range of frequencies — Fast emergency shutdown input • Three Serial Peripheral Interface Modules (SPI) — Configurable for 8 or 16-bit data size • Eight Serial Communication Interfaces (SCI) — Standard mark/space non-return-to-zero (NRZ) format — Selectable IrDA 1.4 return-to-zero-inverted (RZI) format with programmable pulse widths • Two Inter-IC bus (IIC) Modules — Multi-master operation — Software programmable for one of 256 different serial clock frequencies — Broadcast mode support — 10-bit address support • On-Chip Voltage Regulator — Two parallel, linear voltage regulators with bandgap reference — Low-voltage detect (LVD) with low-voltage interrupt (LVI) — Power-on reset (POR) circuit — 3.3V and 5V range operation — Low-voltage reset (LVR) • Low-power wake-up timer (API) — Available in all modes including Full Stop Mode — Trimmable to +-5% accuracy — Time-out periods range from 0.2ms to ~13s with a 0.2ms resolution • Input/Output — Up to 152 general-purpose input/output (I/O) pins plus 2 input-only pins — Hysteresis and configurable pull up/pull down device on all input pins — Configurable drive strength on all output pins • Package Options — 208-pin MAPBGA — 144-pin low-profile quad flat-pack (LQFP) — 112-pin low-profile quad flat-pack (LQFP) — 80-pin quad flat-pack (QFP) • 50MHz maximum CPU bus frequency, 100MHz maximum XGATE bus frequency NXP Electronics components unboxing,humidity card changed color chip can used? |
7234
|
80-QFP
|
|
||||||||||||||||||||||||||
Transceiver, Non-Inverting 1 Element 8 Bit per Element 3-State Output 24-SSOP
|
1808
|
24-SSOP (0.209", 5.30mm Width)
|
|
||||||||||||||||||||||||||
MPC8xx Microprocessor IC MPC8xx 1 Core, 32-Bit 80MHz 256-PBGA (23x23)
|
9628
|
256-BBGA
|
|
||||||||||||||||||||||||||
S08 S08 Microcontroller IC 8-Bit 20MHz 4KB (4K x 8) FLASH 28-SOIC
|
3765
|
28-SOIC (0.295", 7.50mm Width)
|
|
||||||||||||||||||||||||||