Lattice Semiconductor Corporation Distributor -ICONE Electronic
ICONE uses cookies and similar technologies to collect information about you and your interactions and communications with our website and services (including session replays and chat session recordings), which information may be shared with third-party service providers. Please view our Privacy Statement and Cookie Statement for more information. By continuing to use our site, you agree to the terms of our Privacy Statement, the use of cookies, tags, pixels, beacons and other technologies, and our Site Terms and Conditions.
Trustpilot
FIRST SHOPPING ORDER

FIRST ORDER

FREE 10% DISCOUNT

EXCLUSIVE TO NEW CUSTOMERS
banner_page

Lattice Semiconductor Corporation

Alarms, Buzzers, and Sirens

Results: 20115
Filters
    Stacked Scrolling
  • 20115 Results
  • Img
    Pdf
    Part Number
    Manufacturers
    Desc
    In Stock
    Packing
    Rfq
    LFD2NX-40-8MG121C
    Cetrus™-NX Field Programmable Gate Array (FPGA) IC 71 1548288 39000 121-VFBGA, CSPBGA
    5592
    121-VFBGA, CSPBGA
    LFE2-50E-6F672I
    ECP2 Field Programmable Gate Array (FPGA) IC 500 396288 48000 672-BBGA
    3104
    672-BBGA
    LAMXO3LF-2100E-5BG324E
    MachXO3 Field Programmable Gate Array (FPGA) IC 268 75776 2100 324-LFBGA
    5706
    324-LFBGA
    LFE2-6E-5T144I
    ECP2 Field Programmable Gate Array (FPGA) IC 90 56320 6000 144-LQFP
    4556
    144-LQFP
    LFCPNX-50-7CBG256I
    CetrusPro™-NX Field Programmable Gate Array (FPGA) IC 167 1769472 52000 256-LFBGA
    9319
    256-LFBGA
    LFE2-70E-5F672I
    ECP2 Field Programmable Gate Array (FPGA) IC 500 1056768 68000 672-BBGA
    8324
    672-BBGA
    A Comprehensive Guide To ICE5LP1K-SG48ITR iCE40 Ultra™ Field Programmable Gate Array (FPGA) IC 39 65536 1100 48-VFQFN Exposed Pad

    iCE40 Ultra™ Field Programmable Gate Array (FPGA) IC 39 65536 1100 48-VFQFN Exposed Pad


    General Description

    iCE40 Ultra family is an ultra-low power FPGA and sensor manager designed for ultra-low power mobile applications,

    such as smartphones, tablets and hand-held devices. The iCE40 Ultra family includes integrated SPI and I²Cblocks to

    interface with virtually all mobile sensors and application processors. The iCE40 Ultra family also featurestwo on-chip

    oscillators, 10 kHz and 48 MHz. The LFOSC (10 kHz) is ideal for low power function in always-on applications, while

    HFOSC (48 MHz) can be used for awaken activities.

    The iCE40 Ultra family also features DSP functional block to off-load Application Processor to pre-process information

    sent from the mobile sensors. The embedded RGB PWM IP, with the three 24 mA constant current RGB outputs on the

    iCE40 Ultra provides all the necessary logic to directly drive the service LED, without the need ofexternal MOSFET or

    buffer.

    The 500 mA constant current IR driver output provides a direct interface to external LED for application such asIrDA

    functions. Users simply implement the modulation logic that meets his needs, and connect the IR driverdirectly to the

    LED, without the need of external MOSFET or buffer. This high current IR driver can also be used asBarcode Emulation,

    sending barcode information to external Barcode Reader.

    The iCE40 Ultra family of devices are targeting for mobile applications to perform functions such as IrDA, ServiceLED,

    Barcode Emulation, GPIO Expander, SDIO Level Shift, and other custom functions.

    The iCE40 Ultra family features three device densities, from 1100 to 3520 Look Up Tables (LUTs) of logic with

    programmable I/Os that can be used as either SPI/I²C interface ports or general purpose I/O’s. It also has up to 80kbits

    of Block RAMs to work with user logic.


    Features

    • Flexible Logic Architecture

          Three devices with 1100 to 3520 LUTs

          Offered in WLCS, ucfBGA and QFN packages

    • Ultra-low Power Devices

          Advanced 40 nm ultra-low power process

          As low as 71 µA standby current typical

    • Embedded Memory

          Up to 80 kbits sysMEM™ Embedded Block RAM

    • Two Hardened I2C Interfaces

    • Two Hardened SPI Interfaces

    • Two On-Chip Oscillators

          Low Frequency Oscillator – 10 kHz

          High Frequency Oscillator – 48 MHz

    • 24 mA Current Drive RGB LED Outputs

          Three drive outputs in each device

          User selectable sink current up to 24 mA

    • 500 mA Current Drive IR LED Output

          One IR drive output in each device

          User selectable sink current up to 500 mA

    • On-chip DSP

          Signed and unsigned 8-bit or 16-bit functions

          Functions include Multiplier, Accumulator, and Multiply-Accumulate (MAC)

    • Flexible On-Chip Clocking

          Eight low skew global signal resource, six can be directly driven from external pins

          One PLL with dynamic interface per device

    • Flexible Device Configuration

          SRAM is configured through:

          — Standard SPI Interface

          — Internal Nonvolatile Configuration Memory (NVCM)

    • Ultra-Small Form Factor

          As small as 2.078 mm x 2.078 mm

    • Applications

          Smartphones

          Tablets and Consumer Handheld Devices

          Handheld Commercial and Industrial Devices

          Multi Sensor Management Applications

          Sensor Pre-processing and Sensor Fusion

          Always-On Sensor Applications

          USB 3.1 Type C Cable Detect / Power Delivery Applications


    How to choose FPGA for your project?



                                                                      



    PDF

    15
    48-VFQFN Exposed Pad
    LFE2-70SE-6F900I
    ECP2 Field Programmable Gate Array (FPGA) IC 583 1056768 68000 900-BBGA
    6414
    900-BBGA
    A Comprehensive Guide To LCMXO2-256HC-4SG48I MachXO2 Field Programmable Gate Array (FPGA) IC 40 256 48-VFQFN Exposed Pad

    MachXO2 Field Programmable Gate Array (FPGA) IC 40 256 48-VFQFN Exposed Pad


    General Description

    The MachXO2 family of ultra low power, instant-on, non-volatile PLDs has six devices with densities ranging from 256 to

    6864 Look-Up Tables (LUTs). In addition to LUT-based, low-cost programmable logic these devices feature Embedded

    Block RAM (EBR), Distributed RAM, User Flash Memory (UFM), Phase Locked Loops (PLLs), preengineered source

    synchronous I/O support, advanced configuration support including dual-boot capability and hardened versions of

    commonly used functions such as SPI controller, I²C controller and timer/counter. These features allow these devices to

    be used in low cost, high volume consumer and system applications.

    The MachXO2 devices are designed on a 65 nm non-volatile low power process. The device architecture has several

    features such as programmable low swing differential I/Os and the ability to turn off I/O banks, on-chip PLLs and

    oscillators dynamically. These features help manage static and dynamic power consumption resulting in low static power

    for all members of the family.

    The MachXO2 devices are available in two versions – ultra low power (ZE) and high performance (HC and HE) devices.

    The ultra low power devices are offered in three speed grades –1, –2 and –3, with –3 being the fastest. Similarly, the

    high-performance devices are offered in three speed grades: –4, –5 and –6, with –6 being the fastest. HC devices have an

    internal linear voltage regulator which supports external VCC supply voltages of 3.3 V or 2.5 V. ZE and HE devices only

    accept 1.2 V as the external VCC supply voltage. With the exception of power supply voltage all three types of devices

    (ZE, HC and HE) are functionally compatible and pin compatible with each other.

    The MachXO2 PLDs are available in a broad range of advanced halogen-free packages ranging from the space saving

    2.5 mm x 2.5 mm WLCSP to the 23 mm x 23 mm fpBGA. MachXO2 devices support density migration within the same

    package. Table 1-1 shows the LUT densities, package and I/O options, along with other key parameters.

    The pre-engineered source synchronous logic implemented in the MachXO2 device family supports a broad range of

    interface standards, including LPDDR, DDR, DDR2 and 7:1 gearing for display I/Os.

    The MachXO2 devices offer enhanced I/O features such as drive strength control, slew rate control, PCI compati bility,

    bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. Pull-up, pull-down and

    bus-keeper features are controllable on a“per-pin”basis.

    A user-programmable internal oscillator is included in MachXO2 devices. The clock output from this oscillator may be

    divided by the timer/counter for use as clock input in functions such as LED control, key-board scanner and sim-ilar state

    machines.

    The MachXO2 devices also provide flexible, reliable and secure configuration from on-chip Flash memory. These devices

    can also configure themselves from external SPI Flash or be configured by an external master through the JTAG test

    access port or through the I2C port. Additionally, MachXO2 devices support dual-boot capability (using external Flash

    memory) and remote field upgrade (TransFR) capability.

    Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the MachXO2

    family of devices. Popular logic synthesis tools provide synthesis library support for MachXO2. Lattice design tools use the

    synthesis tool output along with the user-specified preferences and constraints to place and route the design in the

    MachXO2 device. These tools extract the timing from the routing and back-annotate it intothe design for timing

    verification.

    Lattice provides many pre-engineered IP (Intellectual Property) LatticeCORE™ modules, including a number of reference

    designs licensed free of charge, optimized for the MachXO2 PLD family. By using these configurable soft core IP cores as

    standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their productivity.


    Features

    • Flexible Logic Architecture

          Six devices with 256 to 6864 LUT4s and 18 to 334 I/Os

    • Ultra Low Power Devices

          Advanced 65 nm low power process

          As low as 22 µW standby power

          Programmable low swing differential I/Os

          Stand-by mode and other power saving options

    • Embedded and Distributed Memory

          Up to 240 kbits sysMEM™ Embedded BlockRAM

          Up to 54 kbits Distributed RAM

          Dedicated FIFO control logic

    • On-Chip User Flash Memory

          Up to 256 kbits of User Flash Memory

          100,000 write cycles

          Accessible through WISHBONE, SPI, I2C and JTAG interfaces

          Can be used as soft processor PROM or as Flash memory

    • Pre-Engineered Source Synchronous I/O

          DDR registers in I/O cells

          Dedicated gearing logic

          7:1 Gearing for Display I/Os

          Generic DDR, DDRX2, DDRX4

          Dedicated DDR/DDR2/LPDDR memory with DQS support

    • High Performance, Flexible I/O Buffer

          Programmable sysIO™ buffer supports wide range of interfaces:

          – LVCMOS 3.3/2.5/1.8/1.5/1.2

          – LVTTL

          – PCI

          – LVDS, Bus-LVDS, MLVDS, RSDS, LVPECL

          – SSTL 25/18

          – HSTL 18

          – Schmitt trigger inputs, up to 0.5 V hysteresis

          I/Os support hot socketing

          On-chip differential termination

          Programmable pull-up or pull-down mode

    • Flexible On-Chip Clocking

          Eight primary clocks

          Up to two edge clocks for high-speed I/O interfaces (top and bottom sides only)

          Up to two analog PLLs per device with fractional-n frequency synthesis

          – Wide input frequency range (7 MHz to 400 MHz)

    • Non-volatile, Infinitely Reconfigurable

          Instant-on – powers up in microseconds

          Single-chip, secure solution

          Programmable through JTAG, SPI or I²C

          Supports background programming of non-vola-tile memory

          Optional dual boot with external SPI memory

    • TransFR™ Reconfiguration

          In-field logic update while system operates

    • Enhanced System Level Support

          On-chip hardened functions: SPI, I²C, timer/counter

          On-chip oscillator with 5.5% accuracy

          Unique TraceID for system tracking

          One Time Programmable (OTP) mode

          Single power supply with extended operating range

          IEEE Standard 1149.1 boundary scan

          IEEE 1532 compliant in-system programming

    • Broad Range of Package Options

          TQFP, WLCSP, ucBGA, csBGA, caBGA, ftBGA, fpBGA, QFN package options

          Small footprint package options

          – As small as 2.5 mm x 2.5 mm

          Density migration supported

          Advanced halogen-free packaging


    How to choose FPGA for your project?



                                                                       



    PDF

    1437
    48-VFQFN Exposed Pad
    LFE2M100SE-6F900C
    ECP2M Field Programmable Gate Array (FPGA) IC 416 5435392 95000 900-BBGA
    1602
    900-BBGA
    A Comprehensive Guide To LCMXO2-1200ZE-1TG100C MachXO2 Field Programmable Gate Array (FPGA) IC 79 65536 1280 100-LQFP

    MachXO2 Field Programmable Gate Array (FPGA) IC 79 65536 1280 100-LQFP


    General Description

    The MachXO2 family of ultra low power, instant-on, non-volatile PLDs has six devices with densities ranging from 256 to

    6864 Look-Up Tables (LUTs). In addition to LUT-based, low-cost programmable logic these devices feature Embedded

    Block RAM (EBR), Distributed RAM, User Flash Memory (UFM), Phase Locked Loops (PLLs), preengineered source

    synchronous I/O support, advanced configuration support including dual-boot capability and hardened versions of

    commonly used functions such as SPI controller, I²C controller and timer/counter. These features allow these devices to

    be used in low cost, high volume consumer and system applications.

    The MachXO2 devices are designed on a 65 nm non-volatile low power process. The device architecture has several

    features such as programmable low swing differential I/Os and the ability to turn off I/O banks, on-chip PLLs and

    oscillators dynamically. These features help manage static and dynamic power consumption resulting in low static power

    for all members of the family.

    The MachXO2 devices are available in two versions – ultra low power (ZE) and high performance (HC and HE) devices.

    The ultra low power devices are offered in three speed grades –1, –2 and –3, with –3 being the fastest. Similarly, the

    high-performance devices are offered in three speed grades: –4, –5 and –6, with –6 being the fastest. HC devices have an

    internal linear voltage regulator which supports external VCC supply voltages of 3.3 V or 2.5 V. ZE and HE devices only

    accept 1.2 V as the external VCC supply voltage. With the exception of power supply voltage all three types of devices

    (ZE, HC and HE) are functionally compatible and pin compatible with each other.

    The MachXO2 PLDs are available in a broad range of advanced halogen-free packages ranging from the space saving

    2.5 mm x 2.5 mm WLCSP to the 23 mm x 23 mm fpBGA. MachXO2 devices support density migration within the same

    package. Table 1-1 shows the LUT densities, package and I/O options, along with other key parameters.

    The pre-engineered source synchronous logic implemented in the MachXO2 device family supports a broad range of

    interface standards, including LPDDR, DDR, DDR2 and 7:1 gearing for display I/Os.

    The MachXO2 devices offer enhanced I/O features such as drive strength control, slew rate control, PCI compati bility,

    bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. Pull-up, pull-down and

    bus-keeper features are controllable on a“per-pin”basis.

    A user-programmable internal oscillator is included in MachXO2 devices. The clock output from this oscillator may be

    divided by the timer/counter for use as clock input in functions such as LED control, key-board scanner and sim-ilar state

    machines.

    The MachXO2 devices also provide flexible, reliable and secure configuration from on-chip Flash memory. These devices

    can also configure themselves from external SPI Flash or be configured by an external master through the JTAG test

    access port or through the I2C port. Additionally, MachXO2 devices support dual-boot capability (using external Flash

    memory) and remote field upgrade (TransFR) capability.

    Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the MachXO2

    family of devices. Popular logic synthesis tools provide synthesis library support for MachXO2. Lattice design tools use the

    synthesis tool output along with the user-specified preferences and constraints to place and route the design in the

    MachXO2 device. These tools extract the timing from the routing and back-annotate it intothe design for timing

    verification.

    Lattice provides many pre-engineered IP (Intellectual Property) LatticeCORE™ modules, including a number of reference

    designs licensed free of charge, optimized for the MachXO2 PLD family. By using these configurable soft core IP cores as

    standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their productivity.


    Features

    • Flexible Logic Architecture

          Six devices with 256 to 6864 LUT4s and 18 to 334 I/Os

    • Ultra Low Power Devices

          Advanced 65 nm low power process

          As low as 22 µW standby power

          Programmable low swing differential I/Os

          Stand-by mode and other power saving options

    • Embedded and Distributed Memory

          Up to 240 kbits sysMEM™ Embedded BlockRAM

          Up to 54 kbits Distributed RAM

          Dedicated FIFO control logic

    • On-Chip User Flash Memory

          Up to 256 kbits of User Flash Memory

          100,000 write cycles

          Accessible through WISHBONE, SPI, I2C and JTAG interfaces

          Can be used as soft processor PROM or as Flash memory

    • Pre-Engineered Source Synchronous I/O

          DDR registers in I/O cells

          Dedicated gearing logic

          7:1 Gearing for Display I/Os

          Generic DDR, DDRX2, DDRX4

          Dedicated DDR/DDR2/LPDDR memory with DQS support

    • High Performance, Flexible I/O Buffer

          Programmable sysIO™ buffer supports wide range of interfaces:

          – LVCMOS 3.3/2.5/1.8/1.5/1.2

          – LVTTL

          – PCI

          – LVDS, Bus-LVDS, MLVDS, RSDS, LVPECL

          – SSTL 25/18

          – HSTL 18

          – Schmitt trigger inputs, up to 0.5 V hysteresis

          I/Os support hot socketing

          On-chip differential termination

          Programmable pull-up or pull-down mode

    • Flexible On-Chip Clocking

          Eight primary clocks

          Up to two edge clocks for high-speed I/O interfaces (top and bottom sides only)

          Up to two analog PLLs per device with fractional-n frequency synthesis

          – Wide input frequency range (7 MHz to 400 MHz)

    • Non-volatile, Infinitely Reconfigurable

          Instant-on – powers up in microseconds

          Single-chip, secure solution

          Programmable through JTAG, SPI or I²C

          Supports background programming of non-vola-tile memory

          Optional dual boot with external SPI memory

    • TransFR™ Reconfiguration

          In-field logic update while system operates

    • Enhanced System Level Support

          On-chip hardened functions: SPI, I²C, timer/counter

          On-chip oscillator with 5.5% accuracy

          Unique TraceID for system tracking

          One Time Programmable (OTP) mode

          Single power supply with extended operating range

          IEEE Standard 1149.1 boundary scan

          IEEE 1532 compliant in-system programming

    • Broad Range of Package Options

          TQFP, WLCSP, ucBGA, csBGA, caBGA, ftBGA, fpBGA, QFN package options

          Small footprint package options

          – As small as 2.5 mm x 2.5 mm

          Density migration supported

          Advanced halogen-free packaging


    How to choose FPGA for your project?



                                                                   



    PDF

    9972
    100-LQFP
    LFE2M20SE-6F484I
    ECP2M Field Programmable Gate Array (FPGA) IC 304 1246208 19000 484-BBGA
    6735
    484-BBGA
    A Comprehensive Guide To LCMXO3LF-6900E-5MG256I MachXO3 Field Programmable Gate Array (FPGA) IC 206 245760 6864 256-VFBGA, CSPBGA

    MachXO3 Field Programmable Gate Array (FPGA) IC 206 245760 6864 256-VFBGA, CSPBGA


    General Description

    MachXO3™ device family is an Ultra-Low Density family that supports the most advanced programmable bridging and

    I/O expansion. It has the breakthrough I/O density and the lowest cost per I/O. The device I/O features have the

    integrated support for latest industry standard I/O.

    The MachXO3L/LF family of low power, instant-on, non-volatile PLDs has five devices with densities ranging from 640 to

    9400 Look-Up Tables (LUTs). In addition to LUT-based, low-cost programmable logic these devices feature Embedded

    Block RAM (EBR), Distributed RAM, Phase Locked Loops (PLLs), pre-engineered source synchronous I/O support, advanced

    configuration support including dual-boot capability and hardened versions of commonly used functions such as SPI

    controller, I2C controller and timer/counter. MachXO3LF devices also support User Flash Memory (UFM). These features

    allow these devices to be used in low cost, high volume applications such as consumer electronics, compute and storage,

    wireless communications, industrial control, and automotive systems.

    The MachXO3L/LF devices are designed on a 65 nm non-volatile low power process. The device architecture has several

    features such as programmable low swing differential I/O and the ability to turn off I/O banks, on-chip PLLs and

    oscillators dynamically. These features help manage static and dynamic power consumption resulting in low static power

    for all members of the family.

    The MachXO3L/LF devices are available in two versions C and E with two speed grades: -5 and -6, with -6 being the

    fastest. C devices have an internal linear voltage regulator which supports external VCC supply voltages of 3.3 V or 2.5 V.

    E devices only accept 1.2 V as the external VCC supply voltage. With the exception of power supply voltage both C and E

    are functionally compatible with each other.

    The MachXO3L/LF PLDs are available in a broad range of advanced halogen-free packages ranging from the space saving

    2.5 x 2.5 mm WLCSP to the 19 x 19 mm caBGA. MachXO3L/LF devices support density migration within the same package.

    Table 1.1 shows the LUT densities, package and I/O options, along with other key parameters.

    The MachXO3L/LF devices offer enhanced I/O features  such as drive strength control, slew rate control, PCI compatibility,

    bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. Pull-up, pull-down and

    bus-keeper features are controllable on a “per-pin” basis. A user-programmable internal oscillator is included in

    MachXO3L/LF devices. The clock output from this oscillator may be divided by the timer/counter for use as clock input in

    functions such as LED control, keyboard scanner and similar state machines.

    The MachXO3L/LF devices also provide flexible, reliable and secure configuration from on-chip NVCM/Flash. These

    devices can also configure themselves from external SPI Flash or be configured by an external master through the JTAG

    test access port or through the I²C port. Additionally, MachXO3L/LF devices support dual-boot capability (using external

    Flash memory) and remote field upgrade (TransFR) capability.

    Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the

    MachXO3L/LF family of devices. Popular logic synthesis tools provide synthesis library support for MachXO3L/LF. Lattice

    design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route

    the design in the MachXO3L/LF device. These tools extract the timing from the routing and back-annotate it into the

    design for timing verification.

    Lattice provides many pre-engineered IP (Intellectual Property) LatticeCORE™ modules, including a number of reference

    designs licensed free of charge, optimized for the MachXO3L/LF PLD family. By using these configurable soft core IP

    cores as standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their

    productivity.


    Features

    • Solutions

          Smallest footprint, lowest power, high data throughput bridging solutions for mobile applications

          Optimized footprint, logic density, I/O count, I/O performance devices for I/O management and logic applications

          High I/O logic, lowest cost I/O, high I/O devices for I/O expansion applications

    • Flexible Architecture

          Logic Density ranging from 64 to 9.4 k LUT4

          High I/O to LUT ratio with up to 384 I/O pins

    • Advanced Packaging

          0.4 mm pitch: 1 k to 4 k densities in very small footprint WLCSP (2.5 mm × 2.5 mm to 3.8 mm × 3.8 mm) with 28 to

          63 I/O

          0.5 mm pitch: 640 to 9.4 k LUT densities in 6 mm x 6 mm to 10 mm x 10 mm BGA packages with up to281 I/O

          0.8 mm pitch: 1 k to 9.4 k densities with up to 384 I/O in BGA packages

    • Pre-Engineered Source Synchronous I/O

          DDR registers in I/O cells

          Dedicated gearing logic

          7:1 Gearing for Display I/O

          Generic DDR, DDRx2, DDRx4

    • High Performance, Flexible I/O Buffer

          Programmable sysI/O™ buffer supports wide range of interfaces:

                LVCMOS 3.3/2.5/1.8/1.5/1.2

                LVTTL

                LVDS, Bus-LVDS, MLVDS, LVPECL

                MIPI D-PHY Emulated

                Schmitt trigger inputs, up to 0.5 V hysteresis

          Ideal for I/O bridging applications

          I/O support hot socketing

          On-chip differential termination

          Programmable pull-up or pull-down mode

    • Flexible On-Chip Clocking

          Eight primary clocks

          Up to two edge clocks for high-speed I/O interfaces (top and bottom sides only)

          Up to two analog PLLs per device with fractional-n frequency synthesis

                Wide input frequency range (7 MHz to 400 MHz).

    • Non-volatile, Multi-time Programmable

          Instant-on

                Powers up in microseconds

          Optional dual boot with external SPI memory

          Single-chip, secure solution

          Programmable through JTAG, SPI or I2C

          MachXO3L includes multi-time programmable NVCM

          MachXO3LF reconfigurable Flash includes 100,000 write/erase cycle for commercial/industrial devices and 10,000 for

          automotive devices

          Supports background programming of non volatile memory

    • TransFR Reconfiguration

          In-field logic update while I/O holds the system state

    • Enhanced System Level Support

          On-chip hardened functions: SPI, I2C, timer/counter

          On-chip oscillator with 5.5% accuracy for commercial/industrial devices

          Unique TraceID for system tracking

          Single power supply with extended operatingrange

          IEEE Standard 1149.1 boundary scan

          IEEE 1532 compliant in-system programming

    • Applications

          Consumer Electronics

          Compute and Storage

          Wireless Communications

          Industrial Control Systems

          Automotive System

    • Low Cost Migration Path

          Migration from the Flash based MachXO3LF to the NVCM based MachXO3L

          Pin compatible and equivalent timing


    How to choose FPGA for your project?



                                                                         



    PDF

    7530
    256-VFBGA, CSPBGA
    LFE2M35SE-6F672C
    ECP2M Field Programmable Gate Array (FPGA) IC 410 2151424 34000 672-BBGA
    7756
    672-BBGA
    A Comprehensive Guide To LCMXO1200C-3TN100I MachXO Field Programmable Gate Array (FPGA) IC 73 9421 1200 100-LQFP

    MachXO Field Programmable Gate Array (FPGA) IC 73 9421 1200 100-LQFP


    General Description

    The MachXO family architecture contains an array of logic blocks surrounded by Programmable I/O (PIO). Some devices

    in this family have sysCLOCK PLLs and blocks of sysMEM™ Embedded Block RAM (EBRs). 

    The logic blocks are arranged in a two-dimensional grid with rows and columns. The EBR blocks are arranged in a column

    to the left of the logic array. The PIO cells are located at the periphery of the device, arranged into Banks. The PIOs utilize

    a flexible I/O buffer referred to as a sysIO interface that supports operation with a variety of inter-face standards. The

    blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool

    automatically allocates these routing resources.

    There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and the Programmable Functional unit

    without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM, and register func-tions. The

    PFF block contains building blocks for logic, arithmetic, ROM, and register functions. Both the PFU and PFF blocks are

    optimized for flexibility, allowing complex designs to be implemented quickly and effectively. Logic blocks are arranged in

    a two-dimensional array. Only one type of block is used per row.

    In the MachXO family, the number of sysIO Banks varies by device. There are different types of I/O Buffers on dif-ferent

    Banks. See the details in later sections of this document. The sysMEM EBRs are large, dedicated fast memory blocks; these

    blocks are found only in the larger devices. These blocks can be configured as RAM, ROM or FIFO. FIFO support includes

    dedicated FIFO pointer and flag“hard”control logic to minimize LUT use.

    The MachXO registers in PFU and sysI/O can be configured to be SET or RESET. After power up and device is configured,

    the device enters into user mode with these registers SET/RESET according to the configuration set-ting, allowing device

    entering to a known state for predictable system function.

    The MachXO architecture provides up to two sysCLOCK™ Phase Locked Loop (PLL) blocks on larger devices.These blocks

    are located at either end of the memory blocks. The PLLs have multiply, divide, and phase shifting capabilities that are

    used to manage the frequency and phase relationships of the clocks.

    Every device in the family has a JTAG Port that supports programming and configuration of the device as well as access to

    the user logic. The MachXO devices are available for operation from 3.3V, 2.5V, 1.8V, and 1.2V power supplies, providing

    easy integration into the overall system.


    Features

    • Non-volatile, Infinitely Reconfigurable

          Instant-on – powers up in microseconds

          Single chip, no external configuration memory required

          Excellent design security, no bit stream to intercept

          Reconfigure SRAM based logic in milliseconds

          SRAM and non-volatile memory programmable through JTAG port

          Supports background programming of non-volatile memory

    • Sleep Mode

          Allows up to 100x static current reduction

    • TransFR™ Reconfiguration (TFR)

          In-field logic update while system operates

    • High I/O to Logic Density

          256 to 2280 LUT4s

          73 to 271 I/Os with extensive package options

          Density migration supported

          Lead free/RoHS compliant packaging

    • Embedded and Distributed Memory

          Up to 27.6 Kbits sysMEM™ Embedded Block RAM

          Up to 7.7 Kbits distributed RAM

          Dedicated FIFO control logic

    • Flexible I/O Buffer

          Programmable sysIO™ buffer supports wide range of interfaces:

          ——LVCMOS 3.3/2.5/1.8/1.5/1.2

          ——LVTTL

          ——PCI

          ——LVDS, Bus-LVDS, LVPECL, RSDS

    • sysCLOCK™ PLLs

          Up to two analog PLLs per device

          Clock multiply, divide, and phase shifting

    • System Level Support

          IEEE Standard 1149.1 Boundary Scan

          Onboard oscillator

          Devices operate with 3.3V, 2.5V, 1.8V or 1.2V power supply

          IEEE 1532 compliant in-system programming


    How to choose FPGA for your project?



                                                            



    PDF

    6280
    100-LQFP
    LFE2M50E-7F900C
    ECP2M Field Programmable Gate Array (FPGA) IC 410 4246528 48000 900-BBGA
    7051
    900-BBGA
    A Comprehensive Guide To LIFCL-40-9MG289I CrossLink-NX™ Field Programmable Gate Array (FPGA) IC 180 1548288 39000 289-TFBGA, CSBGA

    CrossLink-NX™ Field Programmable Gate Array (FPGA) IC 180 1548288 39000 289-TFBGA, CSBGA


    General Description

    CrossLink™-NX family of low-power FPGAs can be used in a wide range of applications, and are optimized for bridging and

    processing needs in Embedded Vision applications – supporting a variety of high bandwidth sensor and display interfaces,

    video processing and machine learning inferencing. It is built on Lattice Nexus FPGA platform, using low-power 28 nm

    FD-SOI technology. It combines the extreme flexibility of an FPGA with the low power and high reliability (due to extremely

    low SER) of FD-SOI technology, and offers small footprint package options.

    CrossLink-NX supports a variety of interfaces including MIPI D-PHY (CSI-2, DSI), LVDS, SLVS, subLVDS, PCI Express (Gen1,

    Gen2), SGMII (Gigabit Ethernet), and more.

    Processing features of CrossLink-NX include up to 39K Logic Cells, 56 18x18 multipliers, 2.9 Mb of embedded memory

    (consisting of EBR and LRAM blocks), distributed memory, DRAM interfaces (supporting DDR3, DDR3L, LPDDR2, and

    LPDDR3 up to 1066 Mbps x16 data width).

    CrossLink-NX FPGAs support fast configuration of its reconfigurable SRAM-based logic fabric, and ultra-fast configuration

    (in under 3 ms) of its programmable sysI/O™. Security features to secure user designs include bitstream encryption and

    password protection. In addition to the high reliability inherent to FD-SOI technology (due to its extremely low SER), active

    reliability features such as built-in frame-based SED/SEC (for SRAM-based logic fabric), and ECC (for EBR and LRAM) are

    also supported. Built-in ADC is available in each device for system monitoring functions.

    Lattice Radiant™ design software allows large complex user designs to be efficiently implemented on CrossLink-NX FPGA

    family. Synthesis library support for CrossLink-NX devices is available for popular logic synthesis tools. Radiant tools use the

    synthesis tool output along with constraints from its floor planning tools, to place and route the user design in

    CrossLink-NX device. The tools extract timing from the routing, and back-annotate it into the design for timing verification.

    Lattice provides many pre-engineered IP (Intellectual Property) modules for CrossLink-NX family. By using these

    configurable soft IP cores as standardized blocks, you are free to concentrate on the unique aspects of your design,

    increasing your productivity.


    Features

    • Programmable Architecture

          17K to 39K logic cells

          24 to 56 18 x 18 multipliers (in sysDSP™ blocks)

          2.5 to 2.9 Mb of embedded memory blocks (EBR, LRAM)

          36 to 192 programmable sysI/O (High Performance and Wide Range I/O)

    • MIPI D-PHY

          Up to two hardened 4-lane MIPI D-PHY interfaces

                Up to eight lanes total

                Transmit or receive

                Supports CSI-2, DSI

                20 Gbps aggregate bandwidth

                2.5 Gbps per lane, 10 Gbps per D-PHY interface

          Additional Soft D-PHY interfaces supported by High Performance (HP) sysI/O

                Transmit or receive

                Supports CSI-2, DSI

                Up to 1.5 Gbps per lane

    • Programmable sysI/O supports wide variety of interfaces

          High Performance (HP) on bottom I/O dual rank

                Supports up to 1.8 V VCCIO

                Mixed voltage support (1.0 V, 1.2 V, 1.5 V, 1.8 V)

                High-speed differential up to 1.5 Gbps

                Supports soft D-PHY (Tx/Rx), LVDS 7:1 (Tx/Rx), SLVS (Tx/Rx), subLVDS (Rx)

                Supports SGMII (Gb Ethernet) – 2 channels (Tx/Rx) at 1.25 Gbps

                Dedicated DDR3/DDR3L and LPDDR2/LPDDR3 memory support with DQS logic, up to 1066 Mbps data-rate and

                x16 data-width

          Wide Range (WR) on Left, Right and Top I/O Banks

                Supports up to 3.3 V VCCIO

                Mixed voltage support (1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.3 V)

                Programmable slew rate (slow, med, fast)

                Controlled impedance mode

                Emulated LVDS support

                Hot-socketing

    • Power Modes – Low Power versus High Performance

          User selectable

          Low-Power mode for power and/or thermal challenges

          High-Performance mode for faster processing

    • Small footprint package options

          4 x 4 mm2to 10 x 10 mm2 package options

    • 2x SGMII CDR at up to 1.25 Gbps – to support 2 channels SGMII using HP I/O

          CDR for RX

          8b/10b decoding

          Independent Loss of Lock (LOL) detector for each CDR block

    • sysCLOCK™ analog PLLs

          Three in 39K LC and two in 17K LC device

          Six outputs per PLL

          Fractional N

          Programmable and dynamic phase control

    • sysDSP Enhanced DSP blocks

          Hardened pre-adder

          Dynamic Shift for AI/ML support

          Four 18 x 18, eight 9 x 9, two 18 x 36, or 36 x 36

          Advanced 18 x 36, two 18 x 18, or four 8 x 8 MAC

    • Flexible memory resources

          Up to 1.5 Mb sysMEM™ Embedded Block RAM EBR)

          Programmable width

          ECC

          FIFO

          80k to 240k bits distributed RAM

          Large RAM Blocks

                0.5 Mbits per block

                Up to five blocks (2.5 Mb total) per device

    • SERDES – PCIe Gen2 x1 channel (Tx/Rx) hard IP in 39K LC device

          Hard IP supports

                Gen1, Gen2, Multi-Function, End Point, Root Complex

                APB control bus

                AHB-Lite for data bus

    • Internal bus interface support

          APB control bus

          AHB-Lite for data bus

          AXI4-streaming 

    • Configuration – Fast, Secure

          SPI – x1, x2, x4 up to 150 MHz

                Master and Slave SPI support

          JTAG

          I²C and I3C

          Ultrafast I/O configuration for instant-on support

          Less than 15 ms full device configuration for LIFCL-40

          Bitstream Security

                Encryption

    • Cryptographic engine

          Bitstream encryption – using AES-256

          Bitstream authentication – using ECDSA

          Hashing algorithms – SHA, HMAC

          True Random Number Generator

          AES 128/256 Encryption

    • Single Event Upset (SEU) Mitigation Support

          Extremely low Soft Error Rate (SER) due to FD SOI technology

          Soft Error Detect – Embedded hard macro

          Soft Error Correction – Without stopping user operation

          Soft Error Injection – Emulate SEU event to debug system error handling

    • ADC – 1 MSPS, 12-bit SAR

          2 ADCs per device

          3 Continuous-time Comparators

          Simultaneous sampling

    • System Level Support

          IEEE 1149.1 and IEEE 1532 compliant

          Reveal Logic Analyzer

          On-chip oscillator for initialization and general use

          1.0 V core power supply


    How to choose FPGA for your project?



                                                            



    PDF

    5765
    289-TFBGA, CSBGA
    LFE2M70E-5F900C
    ECP2M Field Programmable Gate Array (FPGA) IC 416 4642816 67000 900-BBGA
    4045
    900-BBGA
    LFE2M70SE-7F1152C
    ECP2M Field Programmable Gate Array (FPGA) IC 436 4642816 67000 1152-BBGA
    8548
    1152-BBGA
    LFE3-17EA-7MG328C
    ECP3 Field Programmable Gate Array (FPGA) IC 116 716800 17000 328-LFBGA, CSBGA
    4071
    328-LFBGA, CSBGA
    LFE3-35EA-8LFN484I
    ECP3 Field Programmable Gate Array (FPGA) IC 295 1358848 33000 484-BBGA
    1703
    484-BBGA
    LFE3-70EA-8LFN672I
    ECP3 Field Programmable Gate Array (FPGA) IC 380 4526080 67000 672-BBGA
    6685
    672-BBGA
    LFSC3GA115E-5FF1704I
    SC Field Programmable Gate Array (FPGA) IC 942 7987200 115000 1704-BBGA, FCBGA
    2611
    1704-BBGA, FCBGA
    LFSC3GA25E-5F900I
    SC Field Programmable Gate Array (FPGA) IC 378 1966080 25000 900-BBGA
    1120
    900-BBGA
    LFSC3GA40E-6FFA1020I
    SC Field Programmable Gate Array (FPGA) IC 562 4075520 40000 1020-BBGA, FCBGA
    2012
    1020-BBGA, FCBGA
    LFSCM3GA115EP1-5FF1704I
    SCM Field Programmable Gate Array (FPGA) IC 942 7987200 115000 1704-BBGA, FCBGA
    1069
    1704-BBGA, FCBGA
    LFSCM3GA25EP1-5F900I
    SCM Field Programmable Gate Array (FPGA) IC 378 1966080 25000 900-BBGA
    9739
    900-BBGA
    LFSCM3GA40EP1-6FFA1020I
    SCM Field Programmable Gate Array (FPGA) IC 562 4075520 40000 1020-BBGA, FCBGA
    3399
    1020-BBGA, FCBGA
    LFXP10E-3F388I
    XP Field Programmable Gate Array (FPGA) IC 244 221184 10000 388-BBGA
    9048
    388-BBGA
    LFXP15C-5F256C
    XP Field Programmable Gate Array (FPGA) IC 188 331776 15000 256-BGA
    5844
    256-BGA

    Please send RFQ , we will respond immediately.

    Product:

    *Contact Name

    * Telephone

    Business Email

    * Company Name

    * Country

    * Quantity